include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,2,40}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,2,40}*1920
if this polytope has a name.
Group : SmallGroup(1920,235349)
Rank : 5
Schlafli Type : {6,2,2,40}
Number of vertices, edges, etc : 6, 6, 2, 40, 40
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,40}*960, {6,2,2,20}*960
3-fold quotients : {2,2,2,40}*640
4-fold quotients : {3,2,2,20}*480, {6,2,2,10}*480
5-fold quotients : {6,2,2,8}*384
6-fold quotients : {2,2,2,20}*320
8-fold quotients : {3,2,2,10}*240, {6,2,2,5}*240
10-fold quotients : {3,2,2,8}*192, {6,2,2,4}*192
12-fold quotients : {2,2,2,10}*160
15-fold quotients : {2,2,2,8}*128
16-fold quotients : {3,2,2,5}*120
20-fold quotients : {3,2,2,4}*96, {6,2,2,2}*96
24-fold quotients : {2,2,2,5}*80
30-fold quotients : {2,2,2,4}*64
40-fold quotients : {3,2,2,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := (7,8);;
s3 := (10,11)(12,13)(14,17)(15,19)(16,18)(20,21)(22,27)(23,29)(24,28)(25,31)
(26,30)(33,38)(34,37)(35,40)(36,39)(41,42)(43,46)(44,45)(47,48);;
s4 := ( 9,15)(10,12)(11,23)(13,25)(14,18)(16,20)(17,33)(19,35)(21,26)(22,28)
(24,30)(27,41)(29,43)(31,36)(32,37)(34,39)(38,47)(40,44)(42,45)(46,48);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(48)!(3,4)(5,6);
s1 := Sym(48)!(1,5)(2,3)(4,6);
s2 := Sym(48)!(7,8);
s3 := Sym(48)!(10,11)(12,13)(14,17)(15,19)(16,18)(20,21)(22,27)(23,29)(24,28)
(25,31)(26,30)(33,38)(34,37)(35,40)(36,39)(41,42)(43,46)(44,45)(47,48);
s4 := Sym(48)!( 9,15)(10,12)(11,23)(13,25)(14,18)(16,20)(17,33)(19,35)(21,26)
(22,28)(24,30)(27,41)(29,43)(31,36)(32,37)(34,39)(38,47)(40,44)(42,45)(46,48);
poly := sub<Sym(48)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope