include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,30,2,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,30,2,4}*1920
if this polytope has a name.
Group : SmallGroup(1920,236171)
Rank : 6
Schlafli Type : {2,2,30,2,4}
Number of vertices, edges, etc : 2, 2, 30, 30, 4, 4
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,15,2,4}*960, {2,2,30,2,2}*960
3-fold quotients : {2,2,10,2,4}*640
4-fold quotients : {2,2,15,2,2}*480
5-fold quotients : {2,2,6,2,4}*384
6-fold quotients : {2,2,5,2,4}*320, {2,2,10,2,2}*320
10-fold quotients : {2,2,3,2,4}*192, {2,2,6,2,2}*192
12-fold quotients : {2,2,5,2,2}*160
15-fold quotients : {2,2,2,2,4}*128
20-fold quotients : {2,2,3,2,2}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,20)(21,24)(22,23)(25,26)
(27,30)(28,29)(31,34)(32,33);;
s3 := ( 5,21)( 6,15)( 7,13)( 8,23)( 9,11)(10,31)(12,17)(14,27)(16,25)(18,33)
(19,22)(20,32)(24,29)(26,28)(30,34);;
s4 := (36,37);;
s5 := (35,36)(37,38);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!(3,4);
s2 := Sym(38)!( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,20)(21,24)(22,23)
(25,26)(27,30)(28,29)(31,34)(32,33);
s3 := Sym(38)!( 5,21)( 6,15)( 7,13)( 8,23)( 9,11)(10,31)(12,17)(14,27)(16,25)
(18,33)(19,22)(20,32)(24,29)(26,28)(30,34);
s4 := Sym(38)!(36,37);
s5 := Sym(38)!(35,36)(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope