include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,30,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,30,2,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,236171)
Rank : 6
Schlafli Type : {2,4,30,2,2}
Number of vertices, edges, etc : 2, 4, 60, 30, 2, 2
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,30,2,2}*960
3-fold quotients : {2,4,10,2,2}*640
4-fold quotients : {2,2,15,2,2}*480
5-fold quotients : {2,4,6,2,2}*384a
6-fold quotients : {2,2,10,2,2}*320
10-fold quotients : {2,2,6,2,2}*192
12-fold quotients : {2,2,5,2,2}*160
15-fold quotients : {2,4,2,2,2}*128
20-fold quotients : {2,2,3,2,2}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)
(43,58)(44,59)(45,60)(46,61)(47,62);;
s2 := ( 3,33)( 4,37)( 5,36)( 6,35)( 7,34)( 8,43)( 9,47)(10,46)(11,45)(12,44)
(13,38)(14,42)(15,41)(16,40)(17,39)(18,48)(19,52)(20,51)(21,50)(22,49)(23,58)
(24,62)(25,61)(26,60)(27,59)(28,53)(29,57)(30,56)(31,55)(32,54);;
s3 := ( 3, 9)( 4, 8)( 5,12)( 6,11)( 7,10)(13,14)(15,17)(18,24)(19,23)(20,27)
(21,26)(22,25)(28,29)(30,32)(33,39)(34,38)(35,42)(36,41)(37,40)(43,44)(45,47)
(48,54)(49,53)(50,57)(51,56)(52,55)(58,59)(60,62);;
s4 := (63,64);;
s5 := (65,66);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(66)!(1,2);
s1 := Sym(66)!(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)
(42,57)(43,58)(44,59)(45,60)(46,61)(47,62);
s2 := Sym(66)!( 3,33)( 4,37)( 5,36)( 6,35)( 7,34)( 8,43)( 9,47)(10,46)(11,45)
(12,44)(13,38)(14,42)(15,41)(16,40)(17,39)(18,48)(19,52)(20,51)(21,50)(22,49)
(23,58)(24,62)(25,61)(26,60)(27,59)(28,53)(29,57)(30,56)(31,55)(32,54);
s3 := Sym(66)!( 3, 9)( 4, 8)( 5,12)( 6,11)( 7,10)(13,14)(15,17)(18,24)(19,23)
(20,27)(21,26)(22,25)(28,29)(30,32)(33,39)(34,38)(35,42)(36,41)(37,40)(43,44)
(45,47)(48,54)(49,53)(50,57)(51,56)(52,55)(58,59)(60,62);
s4 := Sym(66)!(63,64);
s5 := Sym(66)!(65,66);
poly := sub<Sym(66)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope