include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,2,10,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,2,10,6}*1920
if this polytope has a name.
Group : SmallGroup(1920,236178)
Rank : 6
Schlafli Type : {2,4,2,10,6}
Number of vertices, edges, etc : 2, 4, 4, 10, 30, 6
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,10,6}*960
3-fold quotients : {2,4,2,10,2}*640
5-fold quotients : {2,4,2,2,6}*384
6-fold quotients : {2,4,2,5,2}*320, {2,2,2,10,2}*320
10-fold quotients : {2,4,2,2,3}*192, {2,2,2,2,6}*192
12-fold quotients : {2,2,2,5,2}*160
15-fold quotients : {2,4,2,2,2}*128
20-fold quotients : {2,2,2,2,3}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4)(5,6);;
s3 := (11,12)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)
(33,34)(35,36);;
s4 := ( 7,11)( 8,15)( 9,19)(10,17)(12,21)(13,25)(14,23)(16,27)(18,31)(20,29)
(24,35)(26,33)(30,32)(34,36);;
s5 := ( 7,13)( 8, 9)(10,14)(11,23)(12,24)(15,17)(16,18)(19,25)(20,26)(21,33)
(22,34)(27,29)(28,30)(31,35)(32,36);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s5*s4*s3*s4*s5*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(36)!(1,2);
s1 := Sym(36)!(4,5);
s2 := Sym(36)!(3,4)(5,6);
s3 := Sym(36)!(11,12)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)
(31,32)(33,34)(35,36);
s4 := Sym(36)!( 7,11)( 8,15)( 9,19)(10,17)(12,21)(13,25)(14,23)(16,27)(18,31)
(20,29)(24,35)(26,33)(30,32)(34,36);
s5 := Sym(36)!( 7,13)( 8, 9)(10,14)(11,23)(12,24)(15,17)(16,18)(19,25)(20,26)
(21,33)(22,34)(27,29)(28,30)(31,35)(32,36);
poly := sub<Sym(36)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope