Polytope of Type {2,4,6,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,6,10,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,236178)
Rank : 6
Schlafli Type : {2,4,6,10,2}
Number of vertices, edges, etc : 2, 4, 12, 30, 10, 2
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,10,2}*960
   3-fold quotients : {2,4,2,10,2}*640
   5-fold quotients : {2,4,6,2,2}*384a
   6-fold quotients : {2,4,2,5,2}*320, {2,2,2,10,2}*320
   10-fold quotients : {2,2,6,2,2}*192
   12-fold quotients : {2,2,2,5,2}*160
   15-fold quotients : {2,4,2,2,2}*128
   20-fold quotients : {2,2,3,2,2}*96
   30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)
(43,58)(44,59)(45,60)(46,61)(47,62);;
s2 := ( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,43)( 9,44)(10,45)(11,46)(12,47)
(13,38)(14,39)(15,40)(16,41)(17,42)(18,48)(19,49)(20,50)(21,51)(22,52)(23,58)
(24,59)(25,60)(26,61)(27,62)(28,53)(29,54)(30,55)(31,56)(32,57);;
s3 := ( 3, 8)( 4,12)( 5,11)( 6,10)( 7, 9)(14,17)(15,16)(18,23)(19,27)(20,26)
(21,25)(22,24)(29,32)(30,31)(33,38)(34,42)(35,41)(36,40)(37,39)(44,47)(45,46)
(48,53)(49,57)(50,56)(51,55)(52,54)(59,62)(60,61);;
s4 := ( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)(25,27)
(28,29)(30,32)(33,34)(35,37)(38,39)(40,42)(43,44)(45,47)(48,49)(50,52)(53,54)
(55,57)(58,59)(60,62);;
s5 := (63,64);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(64)!(1,2);
s1 := Sym(64)!(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)
(42,57)(43,58)(44,59)(45,60)(46,61)(47,62);
s2 := Sym(64)!( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,43)( 9,44)(10,45)(11,46)
(12,47)(13,38)(14,39)(15,40)(16,41)(17,42)(18,48)(19,49)(20,50)(21,51)(22,52)
(23,58)(24,59)(25,60)(26,61)(27,62)(28,53)(29,54)(30,55)(31,56)(32,57);
s3 := Sym(64)!( 3, 8)( 4,12)( 5,11)( 6,10)( 7, 9)(14,17)(15,16)(18,23)(19,27)
(20,26)(21,25)(22,24)(29,32)(30,31)(33,38)(34,42)(35,41)(36,40)(37,39)(44,47)
(45,46)(48,53)(49,57)(50,56)(51,55)(52,54)(59,62)(60,61);
s4 := Sym(64)!( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)
(25,27)(28,29)(30,32)(33,34)(35,37)(38,39)(40,42)(43,44)(45,47)(48,49)(50,52)
(53,54)(55,57)(58,59)(60,62);
s5 := Sym(64)!(63,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope