include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,5,2,3,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,5,2,3,2,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,236344)
Rank : 9
Schlafli Type : {2,2,2,5,2,3,2,2}
Number of vertices, edges, etc : 2, 2, 2, 5, 5, 3, 3, 2, 2
Order of s0s1s2s3s4s5s6s7s8 : 30
Order of s0s1s2s3s4s5s6s7s8s7s6s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,11);;
s4 := ( 7, 8)( 9,10);;
s5 := (13,14);;
s6 := (12,13);;
s7 := (15,16);;
s8 := (17,18);;
poly := Group([s0,s1,s2,s3,s4,s5,s6,s7,s8]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5","s6","s7","s8");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;; s6 := F.7;; s7 := F.8;; s8 := F.9;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s6*s6, s7*s7, s8*s8, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s6*s0*s6, s1*s6*s1*s6, s2*s6*s2*s6,
s3*s6*s3*s6, s4*s6*s4*s6, s0*s7*s0*s7,
s1*s7*s1*s7, s2*s7*s2*s7, s3*s7*s3*s7,
s4*s7*s4*s7, s5*s7*s5*s7, s6*s7*s6*s7,
s0*s8*s0*s8, s1*s8*s1*s8, s2*s8*s2*s8,
s3*s8*s3*s8, s4*s8*s4*s8, s5*s8*s5*s8,
s6*s8*s6*s8, s7*s8*s7*s8, s5*s6*s5*s6*s5*s6,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!(1,2);
s1 := Sym(18)!(3,4);
s2 := Sym(18)!(5,6);
s3 := Sym(18)!( 8, 9)(10,11);
s4 := Sym(18)!( 7, 8)( 9,10);
s5 := Sym(18)!(13,14);
s6 := Sym(18)!(12,13);
s7 := Sym(18)!(15,16);
s8 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3,s4,s5,s6,s7,s8>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5,s6,s7,s8> := Group< s0,s1,s2,s3,s4,s5,s6,s7,s8 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s6*s6, s7*s7, s8*s8,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s0*s6*s0*s6,
s1*s6*s1*s6, s2*s6*s2*s6, s3*s6*s3*s6,
s4*s6*s4*s6, s0*s7*s0*s7, s1*s7*s1*s7,
s2*s7*s2*s7, s3*s7*s3*s7, s4*s7*s4*s7,
s5*s7*s5*s7, s6*s7*s6*s7, s0*s8*s0*s8,
s1*s8*s1*s8, s2*s8*s2*s8, s3*s8*s3*s8,
s4*s8*s4*s8, s5*s8*s5*s8, s6*s8*s6*s8,
s7*s8*s7*s8, s5*s6*s5*s6*s5*s6, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope