include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,15}*1920a
if this polytope has a name.
Group : SmallGroup(1920,237638)
Rank : 4
Schlafli Type : {4,4,15}
Number of vertices, edges, etc : 16, 32, 120, 15
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 4
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,15}*960a
5-fold quotients : {4,4,3}*384a
8-fold quotients : {2,4,15}*240
10-fold quotients : {4,4,3}*192a
40-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 9, 12)( 10, 11)( 13, 16)( 14, 15)( 17, 22)( 18, 21)( 19, 24)( 20, 23)
( 25, 32)( 26, 31)( 27, 30)( 28, 29)( 41, 44)( 42, 43)( 45, 48)( 46, 47)
( 49, 54)( 50, 53)( 51, 56)( 52, 55)( 57, 64)( 58, 63)( 59, 62)( 60, 61)
( 73, 76)( 74, 75)( 77, 80)( 78, 79)( 81, 86)( 82, 85)( 83, 88)( 84, 87)
( 89, 96)( 90, 95)( 91, 94)( 92, 93)(105,108)(106,107)(109,112)(110,111)
(113,118)(114,117)(115,120)(116,119)(121,128)(122,127)(123,126)(124,125)
(137,140)(138,139)(141,144)(142,143)(145,150)(146,149)(147,152)(148,151)
(153,160)(154,159)(155,158)(156,157);;
s1 := ( 1, 17)( 2, 18)( 3, 20)( 4, 19)( 5, 21)( 6, 22)( 7, 24)( 8, 23)
( 9, 25)( 10, 26)( 11, 28)( 12, 27)( 13, 29)( 14, 30)( 15, 32)( 16, 31)
( 33, 49)( 34, 50)( 35, 52)( 36, 51)( 37, 53)( 38, 54)( 39, 56)( 40, 55)
( 41, 57)( 42, 58)( 43, 60)( 44, 59)( 45, 61)( 46, 62)( 47, 64)( 48, 63)
( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)
( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 93)( 78, 94)( 79, 96)( 80, 95)
( 97,113)( 98,114)( 99,116)(100,115)(101,117)(102,118)(103,120)(104,119)
(105,121)(106,122)(107,124)(108,123)(109,125)(110,126)(111,128)(112,127)
(129,145)(130,146)(131,148)(132,147)(133,149)(134,150)(135,152)(136,151)
(137,153)(138,154)(139,156)(140,155)(141,157)(142,158)(143,160)(144,159);;
s2 := ( 5, 7)( 6, 8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)
( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33,129)( 34,130)( 35,131)( 36,132)
( 37,135)( 38,136)( 39,133)( 40,134)( 41,137)( 42,138)( 43,139)( 44,140)
( 45,143)( 46,144)( 47,141)( 48,142)( 49,153)( 50,154)( 51,155)( 52,156)
( 53,159)( 54,160)( 55,157)( 56,158)( 57,145)( 58,146)( 59,147)( 60,148)
( 61,151)( 62,152)( 63,149)( 64,150)( 65, 97)( 66, 98)( 67, 99)( 68,100)
( 69,103)( 70,104)( 71,101)( 72,102)( 73,105)( 74,106)( 75,107)( 76,108)
( 77,111)( 78,112)( 79,109)( 80,110)( 81,121)( 82,122)( 83,123)( 84,124)
( 85,127)( 86,128)( 87,125)( 88,126)( 89,113)( 90,114)( 91,115)( 92,116)
( 93,119)( 94,120)( 95,117)( 96,118);;
s3 := ( 1, 33)( 2, 34)( 3, 39)( 4, 40)( 5, 37)( 6, 38)( 7, 35)( 8, 36)
( 9, 57)( 10, 58)( 11, 63)( 12, 64)( 13, 61)( 14, 62)( 15, 59)( 16, 60)
( 17, 49)( 18, 50)( 19, 55)( 20, 56)( 21, 53)( 22, 54)( 23, 51)( 24, 52)
( 25, 41)( 26, 42)( 27, 47)( 28, 48)( 29, 45)( 30, 46)( 31, 43)( 32, 44)
( 65,129)( 66,130)( 67,135)( 68,136)( 69,133)( 70,134)( 71,131)( 72,132)
( 73,153)( 74,154)( 75,159)( 76,160)( 77,157)( 78,158)( 79,155)( 80,156)
( 81,145)( 82,146)( 83,151)( 84,152)( 85,149)( 86,150)( 87,147)( 88,148)
( 89,137)( 90,138)( 91,143)( 92,144)( 93,141)( 94,142)( 95,139)( 96,140)
( 99,103)(100,104)(105,121)(106,122)(107,127)(108,128)(109,125)(110,126)
(111,123)(112,124)(115,119)(116,120);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(160)!( 9, 12)( 10, 11)( 13, 16)( 14, 15)( 17, 22)( 18, 21)( 19, 24)
( 20, 23)( 25, 32)( 26, 31)( 27, 30)( 28, 29)( 41, 44)( 42, 43)( 45, 48)
( 46, 47)( 49, 54)( 50, 53)( 51, 56)( 52, 55)( 57, 64)( 58, 63)( 59, 62)
( 60, 61)( 73, 76)( 74, 75)( 77, 80)( 78, 79)( 81, 86)( 82, 85)( 83, 88)
( 84, 87)( 89, 96)( 90, 95)( 91, 94)( 92, 93)(105,108)(106,107)(109,112)
(110,111)(113,118)(114,117)(115,120)(116,119)(121,128)(122,127)(123,126)
(124,125)(137,140)(138,139)(141,144)(142,143)(145,150)(146,149)(147,152)
(148,151)(153,160)(154,159)(155,158)(156,157);
s1 := Sym(160)!( 1, 17)( 2, 18)( 3, 20)( 4, 19)( 5, 21)( 6, 22)( 7, 24)
( 8, 23)( 9, 25)( 10, 26)( 11, 28)( 12, 27)( 13, 29)( 14, 30)( 15, 32)
( 16, 31)( 33, 49)( 34, 50)( 35, 52)( 36, 51)( 37, 53)( 38, 54)( 39, 56)
( 40, 55)( 41, 57)( 42, 58)( 43, 60)( 44, 59)( 45, 61)( 46, 62)( 47, 64)
( 48, 63)( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 85)( 70, 86)( 71, 88)
( 72, 87)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 93)( 78, 94)( 79, 96)
( 80, 95)( 97,113)( 98,114)( 99,116)(100,115)(101,117)(102,118)(103,120)
(104,119)(105,121)(106,122)(107,124)(108,123)(109,125)(110,126)(111,128)
(112,127)(129,145)(130,146)(131,148)(132,147)(133,149)(134,150)(135,152)
(136,151)(137,153)(138,154)(139,156)(140,155)(141,157)(142,158)(143,160)
(144,159);
s2 := Sym(160)!( 5, 7)( 6, 8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)
( 20, 28)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33,129)( 34,130)( 35,131)
( 36,132)( 37,135)( 38,136)( 39,133)( 40,134)( 41,137)( 42,138)( 43,139)
( 44,140)( 45,143)( 46,144)( 47,141)( 48,142)( 49,153)( 50,154)( 51,155)
( 52,156)( 53,159)( 54,160)( 55,157)( 56,158)( 57,145)( 58,146)( 59,147)
( 60,148)( 61,151)( 62,152)( 63,149)( 64,150)( 65, 97)( 66, 98)( 67, 99)
( 68,100)( 69,103)( 70,104)( 71,101)( 72,102)( 73,105)( 74,106)( 75,107)
( 76,108)( 77,111)( 78,112)( 79,109)( 80,110)( 81,121)( 82,122)( 83,123)
( 84,124)( 85,127)( 86,128)( 87,125)( 88,126)( 89,113)( 90,114)( 91,115)
( 92,116)( 93,119)( 94,120)( 95,117)( 96,118);
s3 := Sym(160)!( 1, 33)( 2, 34)( 3, 39)( 4, 40)( 5, 37)( 6, 38)( 7, 35)
( 8, 36)( 9, 57)( 10, 58)( 11, 63)( 12, 64)( 13, 61)( 14, 62)( 15, 59)
( 16, 60)( 17, 49)( 18, 50)( 19, 55)( 20, 56)( 21, 53)( 22, 54)( 23, 51)
( 24, 52)( 25, 41)( 26, 42)( 27, 47)( 28, 48)( 29, 45)( 30, 46)( 31, 43)
( 32, 44)( 65,129)( 66,130)( 67,135)( 68,136)( 69,133)( 70,134)( 71,131)
( 72,132)( 73,153)( 74,154)( 75,159)( 76,160)( 77,157)( 78,158)( 79,155)
( 80,156)( 81,145)( 82,146)( 83,151)( 84,152)( 85,149)( 86,150)( 87,147)
( 88,148)( 89,137)( 90,138)( 91,143)( 92,144)( 93,141)( 94,142)( 95,139)
( 96,140)( 99,103)(100,104)(105,121)(106,122)(107,127)(108,128)(109,125)
(110,126)(111,123)(112,124)(115,119)(116,120);
poly := sub<Sym(160)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope