include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {40,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {40,6,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,238293)
Rank : 4
Schlafli Type : {40,6,2}
Number of vertices, edges, etc : 80, 240, 12, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {20,6,2}*480b
5-fold quotients : {8,6,2}*384a
20-fold quotients : {4,6,2}*96b
40-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,16)( 6,15)( 7,14)( 8,13)(17,73)(18,74)
(19,75)(20,76)(21,80)(22,79)(23,78)(24,77)(25,65)(26,66)(27,67)(28,68)(29,72)
(30,71)(31,70)(32,69)(33,57)(34,58)(35,59)(36,60)(37,64)(38,63)(39,62)(40,61)
(41,49)(42,50)(43,51)(44,52)(45,56)(46,55)(47,54)(48,53);;
s1 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,28)( 6,27)( 7,25)( 8,26)( 9,23)(10,24)
(11,22)(12,21)(13,30)(14,29)(15,31)(16,32)(33,65)(34,66)(35,68)(36,67)(37,76)
(38,75)(39,73)(40,74)(41,71)(42,72)(43,70)(44,69)(45,78)(46,77)(47,79)(48,80)
(51,52)(53,60)(54,59)(55,57)(56,58)(61,62);;
s2 := ( 1, 9)( 2,12)( 3,11)( 4,10)( 5, 7)(14,16)(17,25)(18,28)(19,27)(20,26)
(21,23)(30,32)(33,41)(34,44)(35,43)(36,42)(37,39)(46,48)(49,57)(50,60)(51,59)
(52,58)(53,55)(62,64)(65,73)(66,76)(67,75)(68,74)(69,71)(78,80);;
s3 := (81,82);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,16)( 6,15)( 7,14)( 8,13)(17,73)
(18,74)(19,75)(20,76)(21,80)(22,79)(23,78)(24,77)(25,65)(26,66)(27,67)(28,68)
(29,72)(30,71)(31,70)(32,69)(33,57)(34,58)(35,59)(36,60)(37,64)(38,63)(39,62)
(40,61)(41,49)(42,50)(43,51)(44,52)(45,56)(46,55)(47,54)(48,53);
s1 := Sym(82)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,28)( 6,27)( 7,25)( 8,26)( 9,23)
(10,24)(11,22)(12,21)(13,30)(14,29)(15,31)(16,32)(33,65)(34,66)(35,68)(36,67)
(37,76)(38,75)(39,73)(40,74)(41,71)(42,72)(43,70)(44,69)(45,78)(46,77)(47,79)
(48,80)(51,52)(53,60)(54,59)(55,57)(56,58)(61,62);
s2 := Sym(82)!( 1, 9)( 2,12)( 3,11)( 4,10)( 5, 7)(14,16)(17,25)(18,28)(19,27)
(20,26)(21,23)(30,32)(33,41)(34,44)(35,43)(36,42)(37,39)(46,48)(49,57)(50,60)
(51,59)(52,58)(53,55)(62,64)(65,73)(66,76)(67,75)(68,74)(69,71)(78,80);
s3 := Sym(82)!(81,82);
poly := sub<Sym(82)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0 >;
to this polytope