include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,6,4}*1920a
if this polytope has a name.
Group : SmallGroup(1920,238598)
Rank : 4
Schlafli Type : {10,6,4}
Number of vertices, edges, etc : 10, 120, 48, 16
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {10,6,4}*480b
5-fold quotients : {2,6,4}*384a
20-fold quotients : {2,6,4}*96c
40-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)
(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)(37,53)
(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);;
s1 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,21)( 6,22)( 7,24)( 8,23)( 9,29)(10,30)
(11,32)(12,31)(13,25)(14,26)(15,28)(16,27)(33,65)(34,66)(35,68)(36,67)(37,69)
(38,70)(39,72)(40,71)(41,77)(42,78)(43,80)(44,79)(45,73)(46,74)(47,76)(48,75)
(51,52)(55,56)(57,61)(58,62)(59,64)(60,63);;
s2 := ( 2, 4)( 5,16)( 6,13)( 7,14)( 8,15)( 9,11)(18,20)(21,32)(22,29)(23,30)
(24,31)(25,27)(34,36)(37,48)(38,45)(39,46)(40,47)(41,43)(50,52)(53,64)(54,61)
(55,62)(56,63)(57,59)(66,68)(69,80)(70,77)(71,78)(72,79)(73,75);;
s3 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)(17,21)(18,22)
(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)
(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)
(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(80)!(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)
(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)
(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);
s1 := Sym(80)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,21)( 6,22)( 7,24)( 8,23)( 9,29)
(10,30)(11,32)(12,31)(13,25)(14,26)(15,28)(16,27)(33,65)(34,66)(35,68)(36,67)
(37,69)(38,70)(39,72)(40,71)(41,77)(42,78)(43,80)(44,79)(45,73)(46,74)(47,76)
(48,75)(51,52)(55,56)(57,61)(58,62)(59,64)(60,63);
s2 := Sym(80)!( 2, 4)( 5,16)( 6,13)( 7,14)( 8,15)( 9,11)(18,20)(21,32)(22,29)
(23,30)(24,31)(25,27)(34,36)(37,48)(38,45)(39,46)(40,47)(41,43)(50,52)(53,64)
(54,61)(55,62)(56,63)(57,59)(66,68)(69,80)(70,77)(71,78)(72,79)(73,75);
s3 := Sym(80)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)(17,21)
(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)
(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)
(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80);
poly := sub<Sym(80)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope