Polytope of Type {3,8,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,8,10}*1920
Also Known As : {{3,8}6,{8,10|2}}. if this polytope has another name.
Group : SmallGroup(1920,238599)
Rank : 4
Schlafli Type : {3,8,10}
Number of vertices, edges, etc : 12, 48, 160, 10
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {3,4,10}*480
   5-fold quotients : {3,8,2}*384
   16-fold quotients : {3,2,10}*120
   20-fold quotients : {3,4,2}*96
   32-fold quotients : {3,2,5}*60
   40-fold quotients : {3,4,2}*48
   80-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)(26,30)
(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47)(51,52)(53,54)(57,61)
(58,62)(59,64)(60,63)(67,68)(69,70)(73,77)(74,78)(75,80)(76,79);;
s1 := ( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(18,20)(21,30)(22,31)(23,32)
(24,29)(26,28)(34,36)(37,46)(38,47)(39,48)(40,45)(42,44)(50,52)(53,62)(54,63)
(55,64)(56,61)(58,60)(66,68)(69,78)(70,79)(71,80)(72,77)(74,76);;
s2 := ( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,13)(10,14)(11,15)(12,16)(17,71)(18,72)
(19,69)(20,70)(21,67)(22,68)(23,65)(24,66)(25,77)(26,78)(27,79)(28,80)(29,73)
(30,74)(31,75)(32,76)(33,55)(34,56)(35,53)(36,54)(37,51)(38,52)(39,49)(40,50)
(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60);;
s3 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,21)( 6,22)( 7,23)( 8,24)( 9,25)(10,26)
(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,65)(34,66)(35,67)(36,68)(37,69)
(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)
(48,80);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(80)!( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)
(26,30)(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47)(51,52)(53,54)
(57,61)(58,62)(59,64)(60,63)(67,68)(69,70)(73,77)(74,78)(75,80)(76,79);
s1 := Sym(80)!( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(18,20)(21,30)(22,31)
(23,32)(24,29)(26,28)(34,36)(37,46)(38,47)(39,48)(40,45)(42,44)(50,52)(53,62)
(54,63)(55,64)(56,61)(58,60)(66,68)(69,78)(70,79)(71,80)(72,77)(74,76);
s2 := Sym(80)!( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,13)(10,14)(11,15)(12,16)(17,71)
(18,72)(19,69)(20,70)(21,67)(22,68)(23,65)(24,66)(25,77)(26,78)(27,79)(28,80)
(29,73)(30,74)(31,75)(32,76)(33,55)(34,56)(35,53)(36,54)(37,51)(38,52)(39,49)
(40,50)(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60);
s3 := Sym(80)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,21)( 6,22)( 7,23)( 8,24)( 9,25)
(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,65)(34,66)(35,67)(36,68)
(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)
(48,80);
poly := sub<Sym(80)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope