include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,30,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,30,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,239472)
Rank : 4
Schlafli Type : {4,30,2}
Number of vertices, edges, etc : 16, 240, 120, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {4,30,2}*480b
5-fold quotients : {4,6,2}*384a
8-fold quotients : {4,15,2}*240
20-fold quotients : {4,6,2}*96c
40-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)(18,26)
(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)
(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)
(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80);;
s1 := ( 3, 4)( 5,12)( 6,11)( 7, 9)( 8,10)(13,14)(17,65)(18,66)(19,68)(20,67)
(21,76)(22,75)(23,73)(24,74)(25,71)(26,72)(27,70)(28,69)(29,78)(30,77)(31,79)
(32,80)(33,49)(34,50)(35,52)(36,51)(37,60)(38,59)(39,57)(40,58)(41,55)(42,56)
(43,54)(44,53)(45,62)(46,61)(47,63)(48,64);;
s2 := ( 1,17)( 2,19)( 3,18)( 4,20)( 5,29)( 6,31)( 7,30)( 8,32)( 9,25)(10,27)
(11,26)(12,28)(13,21)(14,23)(15,22)(16,24)(33,65)(34,67)(35,66)(36,68)(37,77)
(38,79)(39,78)(40,80)(41,73)(42,75)(43,74)(44,76)(45,69)(46,71)(47,70)(48,72)
(50,51)(53,61)(54,63)(55,62)(56,64)(58,59);;
s3 := (81,82);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)
(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)
(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)
(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80);
s1 := Sym(82)!( 3, 4)( 5,12)( 6,11)( 7, 9)( 8,10)(13,14)(17,65)(18,66)(19,68)
(20,67)(21,76)(22,75)(23,73)(24,74)(25,71)(26,72)(27,70)(28,69)(29,78)(30,77)
(31,79)(32,80)(33,49)(34,50)(35,52)(36,51)(37,60)(38,59)(39,57)(40,58)(41,55)
(42,56)(43,54)(44,53)(45,62)(46,61)(47,63)(48,64);
s2 := Sym(82)!( 1,17)( 2,19)( 3,18)( 4,20)( 5,29)( 6,31)( 7,30)( 8,32)( 9,25)
(10,27)(11,26)(12,28)(13,21)(14,23)(15,22)(16,24)(33,65)(34,67)(35,66)(36,68)
(37,77)(38,79)(39,78)(40,80)(41,73)(42,75)(43,74)(44,76)(45,69)(46,71)(47,70)
(48,72)(50,51)(53,61)(54,63)(55,62)(56,64)(58,59);
s3 := Sym(82)!(81,82);
poly := sub<Sym(82)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope