include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {60,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {60,8}*1920g
if this polytope has a name.
Group : SmallGroup(1920,239485)
Rank : 3
Schlafli Type : {60,8}
Number of vertices, edges, etc : 120, 480, 16
Order of s0s1s2 : 30
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {60,4}*960c, {30,8}*960c
4-fold quotients : {30,4}*480
5-fold quotients : {12,8}*384g
8-fold quotients : {15,4}*240, {30,4}*240b, {30,4}*240c
10-fold quotients : {12,4}*192c, {6,8}*192c
16-fold quotients : {15,4}*120, {30,2}*120
20-fold quotients : {6,4}*96
32-fold quotients : {15,2}*60
40-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
48-fold quotients : {10,2}*40
80-fold quotients : {3,4}*24, {6,2}*24
96-fold quotients : {5,2}*20
160-fold quotients : {3,2}*12
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,241)( 2,242)( 3,244)( 4,243)( 5,247)( 6,248)( 7,245)( 8,246)
( 9,273)( 10,274)( 11,276)( 12,275)( 13,279)( 14,280)( 15,277)( 16,278)
( 17,265)( 18,266)( 19,268)( 20,267)( 21,271)( 22,272)( 23,269)( 24,270)
( 25,257)( 26,258)( 27,260)( 28,259)( 29,263)( 30,264)( 31,261)( 32,262)
( 33,249)( 34,250)( 35,252)( 36,251)( 37,255)( 38,256)( 39,253)( 40,254)
( 41,321)( 42,322)( 43,324)( 44,323)( 45,327)( 46,328)( 47,325)( 48,326)
( 49,353)( 50,354)( 51,356)( 52,355)( 53,359)( 54,360)( 55,357)( 56,358)
( 57,345)( 58,346)( 59,348)( 60,347)( 61,351)( 62,352)( 63,349)( 64,350)
( 65,337)( 66,338)( 67,340)( 68,339)( 69,343)( 70,344)( 71,341)( 72,342)
( 73,329)( 74,330)( 75,332)( 76,331)( 77,335)( 78,336)( 79,333)( 80,334)
( 81,281)( 82,282)( 83,284)( 84,283)( 85,287)( 86,288)( 87,285)( 88,286)
( 89,313)( 90,314)( 91,316)( 92,315)( 93,319)( 94,320)( 95,317)( 96,318)
( 97,305)( 98,306)( 99,308)(100,307)(101,311)(102,312)(103,309)(104,310)
(105,297)(106,298)(107,300)(108,299)(109,303)(110,304)(111,301)(112,302)
(113,289)(114,290)(115,292)(116,291)(117,295)(118,296)(119,293)(120,294)
(121,361)(122,362)(123,364)(124,363)(125,367)(126,368)(127,365)(128,366)
(129,393)(130,394)(131,396)(132,395)(133,399)(134,400)(135,397)(136,398)
(137,385)(138,386)(139,388)(140,387)(141,391)(142,392)(143,389)(144,390)
(145,377)(146,378)(147,380)(148,379)(149,383)(150,384)(151,381)(152,382)
(153,369)(154,370)(155,372)(156,371)(157,375)(158,376)(159,373)(160,374)
(161,441)(162,442)(163,444)(164,443)(165,447)(166,448)(167,445)(168,446)
(169,473)(170,474)(171,476)(172,475)(173,479)(174,480)(175,477)(176,478)
(177,465)(178,466)(179,468)(180,467)(181,471)(182,472)(183,469)(184,470)
(185,457)(186,458)(187,460)(188,459)(189,463)(190,464)(191,461)(192,462)
(193,449)(194,450)(195,452)(196,451)(197,455)(198,456)(199,453)(200,454)
(201,401)(202,402)(203,404)(204,403)(205,407)(206,408)(207,405)(208,406)
(209,433)(210,434)(211,436)(212,435)(213,439)(214,440)(215,437)(216,438)
(217,425)(218,426)(219,428)(220,427)(221,431)(222,432)(223,429)(224,430)
(225,417)(226,418)(227,420)(228,419)(229,423)(230,424)(231,421)(232,422)
(233,409)(234,410)(235,412)(236,411)(237,415)(238,416)(239,413)(240,414);;
s1 := ( 1, 49)( 2, 50)( 3, 55)( 4, 56)( 5, 54)( 6, 53)( 7, 51)( 8, 52)
( 9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)( 16, 44)
( 17, 73)( 18, 74)( 19, 79)( 20, 80)( 21, 78)( 22, 77)( 23, 75)( 24, 76)
( 25, 65)( 26, 66)( 27, 71)( 28, 72)( 29, 70)( 30, 69)( 31, 67)( 32, 68)
( 33, 57)( 34, 58)( 35, 63)( 36, 64)( 37, 62)( 38, 61)( 39, 59)( 40, 60)
( 81, 89)( 82, 90)( 83, 95)( 84, 96)( 85, 94)( 86, 93)( 87, 91)( 88, 92)
( 97,113)( 98,114)( 99,119)(100,120)(101,118)(102,117)(103,115)(104,116)
(107,111)(108,112)(109,110)(121,169)(122,170)(123,175)(124,176)(125,174)
(126,173)(127,171)(128,172)(129,161)(130,162)(131,167)(132,168)(133,166)
(134,165)(135,163)(136,164)(137,193)(138,194)(139,199)(140,200)(141,198)
(142,197)(143,195)(144,196)(145,185)(146,186)(147,191)(148,192)(149,190)
(150,189)(151,187)(152,188)(153,177)(154,178)(155,183)(156,184)(157,182)
(158,181)(159,179)(160,180)(201,209)(202,210)(203,215)(204,216)(205,214)
(206,213)(207,211)(208,212)(217,233)(218,234)(219,239)(220,240)(221,238)
(222,237)(223,235)(224,236)(227,231)(228,232)(229,230)(241,410)(242,409)
(243,416)(244,415)(245,413)(246,414)(247,412)(248,411)(249,402)(250,401)
(251,408)(252,407)(253,405)(254,406)(255,404)(256,403)(257,434)(258,433)
(259,440)(260,439)(261,437)(262,438)(263,436)(264,435)(265,426)(266,425)
(267,432)(268,431)(269,429)(270,430)(271,428)(272,427)(273,418)(274,417)
(275,424)(276,423)(277,421)(278,422)(279,420)(280,419)(281,370)(282,369)
(283,376)(284,375)(285,373)(286,374)(287,372)(288,371)(289,362)(290,361)
(291,368)(292,367)(293,365)(294,366)(295,364)(296,363)(297,394)(298,393)
(299,400)(300,399)(301,397)(302,398)(303,396)(304,395)(305,386)(306,385)
(307,392)(308,391)(309,389)(310,390)(311,388)(312,387)(313,378)(314,377)
(315,384)(316,383)(317,381)(318,382)(319,380)(320,379)(321,450)(322,449)
(323,456)(324,455)(325,453)(326,454)(327,452)(328,451)(329,442)(330,441)
(331,448)(332,447)(333,445)(334,446)(335,444)(336,443)(337,474)(338,473)
(339,480)(340,479)(341,477)(342,478)(343,476)(344,475)(345,466)(346,465)
(347,472)(348,471)(349,469)(350,470)(351,468)(352,467)(353,458)(354,457)
(355,464)(356,463)(357,461)(358,462)(359,460)(360,459);;
s2 := ( 1,243)( 2,244)( 3,242)( 4,241)( 5,247)( 6,248)( 7,246)( 8,245)
( 9,251)( 10,252)( 11,250)( 12,249)( 13,255)( 14,256)( 15,254)( 16,253)
( 17,259)( 18,260)( 19,258)( 20,257)( 21,263)( 22,264)( 23,262)( 24,261)
( 25,267)( 26,268)( 27,266)( 28,265)( 29,271)( 30,272)( 31,270)( 32,269)
( 33,275)( 34,276)( 35,274)( 36,273)( 37,279)( 38,280)( 39,278)( 40,277)
( 41,283)( 42,284)( 43,282)( 44,281)( 45,287)( 46,288)( 47,286)( 48,285)
( 49,291)( 50,292)( 51,290)( 52,289)( 53,295)( 54,296)( 55,294)( 56,293)
( 57,299)( 58,300)( 59,298)( 60,297)( 61,303)( 62,304)( 63,302)( 64,301)
( 65,307)( 66,308)( 67,306)( 68,305)( 69,311)( 70,312)( 71,310)( 72,309)
( 73,315)( 74,316)( 75,314)( 76,313)( 77,319)( 78,320)( 79,318)( 80,317)
( 81,323)( 82,324)( 83,322)( 84,321)( 85,327)( 86,328)( 87,326)( 88,325)
( 89,331)( 90,332)( 91,330)( 92,329)( 93,335)( 94,336)( 95,334)( 96,333)
( 97,339)( 98,340)( 99,338)(100,337)(101,343)(102,344)(103,342)(104,341)
(105,347)(106,348)(107,346)(108,345)(109,351)(110,352)(111,350)(112,349)
(113,355)(114,356)(115,354)(116,353)(117,359)(118,360)(119,358)(120,357)
(121,363)(122,364)(123,362)(124,361)(125,367)(126,368)(127,366)(128,365)
(129,371)(130,372)(131,370)(132,369)(133,375)(134,376)(135,374)(136,373)
(137,379)(138,380)(139,378)(140,377)(141,383)(142,384)(143,382)(144,381)
(145,387)(146,388)(147,386)(148,385)(149,391)(150,392)(151,390)(152,389)
(153,395)(154,396)(155,394)(156,393)(157,399)(158,400)(159,398)(160,397)
(161,403)(162,404)(163,402)(164,401)(165,407)(166,408)(167,406)(168,405)
(169,411)(170,412)(171,410)(172,409)(173,415)(174,416)(175,414)(176,413)
(177,419)(178,420)(179,418)(180,417)(181,423)(182,424)(183,422)(184,421)
(185,427)(186,428)(187,426)(188,425)(189,431)(190,432)(191,430)(192,429)
(193,435)(194,436)(195,434)(196,433)(197,439)(198,440)(199,438)(200,437)
(201,443)(202,444)(203,442)(204,441)(205,447)(206,448)(207,446)(208,445)
(209,451)(210,452)(211,450)(212,449)(213,455)(214,456)(215,454)(216,453)
(217,459)(218,460)(219,458)(220,457)(221,463)(222,464)(223,462)(224,461)
(225,467)(226,468)(227,466)(228,465)(229,471)(230,472)(231,470)(232,469)
(233,475)(234,476)(235,474)(236,473)(237,479)(238,480)(239,478)(240,477);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(480)!( 1,241)( 2,242)( 3,244)( 4,243)( 5,247)( 6,248)( 7,245)
( 8,246)( 9,273)( 10,274)( 11,276)( 12,275)( 13,279)( 14,280)( 15,277)
( 16,278)( 17,265)( 18,266)( 19,268)( 20,267)( 21,271)( 22,272)( 23,269)
( 24,270)( 25,257)( 26,258)( 27,260)( 28,259)( 29,263)( 30,264)( 31,261)
( 32,262)( 33,249)( 34,250)( 35,252)( 36,251)( 37,255)( 38,256)( 39,253)
( 40,254)( 41,321)( 42,322)( 43,324)( 44,323)( 45,327)( 46,328)( 47,325)
( 48,326)( 49,353)( 50,354)( 51,356)( 52,355)( 53,359)( 54,360)( 55,357)
( 56,358)( 57,345)( 58,346)( 59,348)( 60,347)( 61,351)( 62,352)( 63,349)
( 64,350)( 65,337)( 66,338)( 67,340)( 68,339)( 69,343)( 70,344)( 71,341)
( 72,342)( 73,329)( 74,330)( 75,332)( 76,331)( 77,335)( 78,336)( 79,333)
( 80,334)( 81,281)( 82,282)( 83,284)( 84,283)( 85,287)( 86,288)( 87,285)
( 88,286)( 89,313)( 90,314)( 91,316)( 92,315)( 93,319)( 94,320)( 95,317)
( 96,318)( 97,305)( 98,306)( 99,308)(100,307)(101,311)(102,312)(103,309)
(104,310)(105,297)(106,298)(107,300)(108,299)(109,303)(110,304)(111,301)
(112,302)(113,289)(114,290)(115,292)(116,291)(117,295)(118,296)(119,293)
(120,294)(121,361)(122,362)(123,364)(124,363)(125,367)(126,368)(127,365)
(128,366)(129,393)(130,394)(131,396)(132,395)(133,399)(134,400)(135,397)
(136,398)(137,385)(138,386)(139,388)(140,387)(141,391)(142,392)(143,389)
(144,390)(145,377)(146,378)(147,380)(148,379)(149,383)(150,384)(151,381)
(152,382)(153,369)(154,370)(155,372)(156,371)(157,375)(158,376)(159,373)
(160,374)(161,441)(162,442)(163,444)(164,443)(165,447)(166,448)(167,445)
(168,446)(169,473)(170,474)(171,476)(172,475)(173,479)(174,480)(175,477)
(176,478)(177,465)(178,466)(179,468)(180,467)(181,471)(182,472)(183,469)
(184,470)(185,457)(186,458)(187,460)(188,459)(189,463)(190,464)(191,461)
(192,462)(193,449)(194,450)(195,452)(196,451)(197,455)(198,456)(199,453)
(200,454)(201,401)(202,402)(203,404)(204,403)(205,407)(206,408)(207,405)
(208,406)(209,433)(210,434)(211,436)(212,435)(213,439)(214,440)(215,437)
(216,438)(217,425)(218,426)(219,428)(220,427)(221,431)(222,432)(223,429)
(224,430)(225,417)(226,418)(227,420)(228,419)(229,423)(230,424)(231,421)
(232,422)(233,409)(234,410)(235,412)(236,411)(237,415)(238,416)(239,413)
(240,414);
s1 := Sym(480)!( 1, 49)( 2, 50)( 3, 55)( 4, 56)( 5, 54)( 6, 53)( 7, 51)
( 8, 52)( 9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)
( 16, 44)( 17, 73)( 18, 74)( 19, 79)( 20, 80)( 21, 78)( 22, 77)( 23, 75)
( 24, 76)( 25, 65)( 26, 66)( 27, 71)( 28, 72)( 29, 70)( 30, 69)( 31, 67)
( 32, 68)( 33, 57)( 34, 58)( 35, 63)( 36, 64)( 37, 62)( 38, 61)( 39, 59)
( 40, 60)( 81, 89)( 82, 90)( 83, 95)( 84, 96)( 85, 94)( 86, 93)( 87, 91)
( 88, 92)( 97,113)( 98,114)( 99,119)(100,120)(101,118)(102,117)(103,115)
(104,116)(107,111)(108,112)(109,110)(121,169)(122,170)(123,175)(124,176)
(125,174)(126,173)(127,171)(128,172)(129,161)(130,162)(131,167)(132,168)
(133,166)(134,165)(135,163)(136,164)(137,193)(138,194)(139,199)(140,200)
(141,198)(142,197)(143,195)(144,196)(145,185)(146,186)(147,191)(148,192)
(149,190)(150,189)(151,187)(152,188)(153,177)(154,178)(155,183)(156,184)
(157,182)(158,181)(159,179)(160,180)(201,209)(202,210)(203,215)(204,216)
(205,214)(206,213)(207,211)(208,212)(217,233)(218,234)(219,239)(220,240)
(221,238)(222,237)(223,235)(224,236)(227,231)(228,232)(229,230)(241,410)
(242,409)(243,416)(244,415)(245,413)(246,414)(247,412)(248,411)(249,402)
(250,401)(251,408)(252,407)(253,405)(254,406)(255,404)(256,403)(257,434)
(258,433)(259,440)(260,439)(261,437)(262,438)(263,436)(264,435)(265,426)
(266,425)(267,432)(268,431)(269,429)(270,430)(271,428)(272,427)(273,418)
(274,417)(275,424)(276,423)(277,421)(278,422)(279,420)(280,419)(281,370)
(282,369)(283,376)(284,375)(285,373)(286,374)(287,372)(288,371)(289,362)
(290,361)(291,368)(292,367)(293,365)(294,366)(295,364)(296,363)(297,394)
(298,393)(299,400)(300,399)(301,397)(302,398)(303,396)(304,395)(305,386)
(306,385)(307,392)(308,391)(309,389)(310,390)(311,388)(312,387)(313,378)
(314,377)(315,384)(316,383)(317,381)(318,382)(319,380)(320,379)(321,450)
(322,449)(323,456)(324,455)(325,453)(326,454)(327,452)(328,451)(329,442)
(330,441)(331,448)(332,447)(333,445)(334,446)(335,444)(336,443)(337,474)
(338,473)(339,480)(340,479)(341,477)(342,478)(343,476)(344,475)(345,466)
(346,465)(347,472)(348,471)(349,469)(350,470)(351,468)(352,467)(353,458)
(354,457)(355,464)(356,463)(357,461)(358,462)(359,460)(360,459);
s2 := Sym(480)!( 1,243)( 2,244)( 3,242)( 4,241)( 5,247)( 6,248)( 7,246)
( 8,245)( 9,251)( 10,252)( 11,250)( 12,249)( 13,255)( 14,256)( 15,254)
( 16,253)( 17,259)( 18,260)( 19,258)( 20,257)( 21,263)( 22,264)( 23,262)
( 24,261)( 25,267)( 26,268)( 27,266)( 28,265)( 29,271)( 30,272)( 31,270)
( 32,269)( 33,275)( 34,276)( 35,274)( 36,273)( 37,279)( 38,280)( 39,278)
( 40,277)( 41,283)( 42,284)( 43,282)( 44,281)( 45,287)( 46,288)( 47,286)
( 48,285)( 49,291)( 50,292)( 51,290)( 52,289)( 53,295)( 54,296)( 55,294)
( 56,293)( 57,299)( 58,300)( 59,298)( 60,297)( 61,303)( 62,304)( 63,302)
( 64,301)( 65,307)( 66,308)( 67,306)( 68,305)( 69,311)( 70,312)( 71,310)
( 72,309)( 73,315)( 74,316)( 75,314)( 76,313)( 77,319)( 78,320)( 79,318)
( 80,317)( 81,323)( 82,324)( 83,322)( 84,321)( 85,327)( 86,328)( 87,326)
( 88,325)( 89,331)( 90,332)( 91,330)( 92,329)( 93,335)( 94,336)( 95,334)
( 96,333)( 97,339)( 98,340)( 99,338)(100,337)(101,343)(102,344)(103,342)
(104,341)(105,347)(106,348)(107,346)(108,345)(109,351)(110,352)(111,350)
(112,349)(113,355)(114,356)(115,354)(116,353)(117,359)(118,360)(119,358)
(120,357)(121,363)(122,364)(123,362)(124,361)(125,367)(126,368)(127,366)
(128,365)(129,371)(130,372)(131,370)(132,369)(133,375)(134,376)(135,374)
(136,373)(137,379)(138,380)(139,378)(140,377)(141,383)(142,384)(143,382)
(144,381)(145,387)(146,388)(147,386)(148,385)(149,391)(150,392)(151,390)
(152,389)(153,395)(154,396)(155,394)(156,393)(157,399)(158,400)(159,398)
(160,397)(161,403)(162,404)(163,402)(164,401)(165,407)(166,408)(167,406)
(168,405)(169,411)(170,412)(171,410)(172,409)(173,415)(174,416)(175,414)
(176,413)(177,419)(178,420)(179,418)(180,417)(181,423)(182,424)(183,422)
(184,421)(185,427)(186,428)(187,426)(188,425)(189,431)(190,432)(191,430)
(192,429)(193,435)(194,436)(195,434)(196,433)(197,439)(198,440)(199,438)
(200,437)(201,443)(202,444)(203,442)(204,441)(205,447)(206,448)(207,446)
(208,445)(209,451)(210,452)(211,450)(212,449)(213,455)(214,456)(215,454)
(216,453)(217,459)(218,460)(219,458)(220,457)(221,463)(222,464)(223,462)
(224,461)(225,467)(226,468)(227,466)(228,465)(229,471)(230,472)(231,470)
(232,469)(233,475)(234,476)(235,474)(236,473)(237,479)(238,480)(239,478)
(240,477);
poly := sub<Sym(480)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope