Polytope of Type {4,120,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,120,2}*1920c
if this polytope has a name.
Group : SmallGroup(1920,239539)
Rank : 4
Schlafli Type : {4,120,2}
Number of vertices, edges, etc : 4, 240, 120, 2
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,60,2}*960b
   4-fold quotients : {4,30,2}*480b
   5-fold quotients : {4,24,2}*384c
   8-fold quotients : {4,15,2}*240
   10-fold quotients : {4,12,2}*192b
   20-fold quotients : {4,6,2}*96c
   40-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432)
(433,435)(434,436)(437,439)(438,440)(441,443)(442,444)(445,447)(446,448)
(449,451)(450,452)(453,455)(454,456)(457,459)(458,460)(461,463)(462,464)
(465,467)(466,468)(469,471)(470,472)(473,475)(474,476)(477,479)(478,480);;
s1 := (  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)( 11, 14)
( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)( 27, 58)
( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)( 35, 50)
( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)( 66, 79)
( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)( 90,115)
( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)( 98,107)
( 99,106)(100,108)(121,181)(122,183)(123,182)(124,184)(125,197)(126,199)
(127,198)(128,200)(129,193)(130,195)(131,194)(132,196)(133,189)(134,191)
(135,190)(136,192)(137,185)(138,187)(139,186)(140,188)(141,221)(142,223)
(143,222)(144,224)(145,237)(146,239)(147,238)(148,240)(149,233)(150,235)
(151,234)(152,236)(153,229)(154,231)(155,230)(156,232)(157,225)(158,227)
(159,226)(160,228)(161,201)(162,203)(163,202)(164,204)(165,217)(166,219)
(167,218)(168,220)(169,213)(170,215)(171,214)(172,216)(173,209)(174,211)
(175,210)(176,212)(177,205)(178,207)(179,206)(180,208)(241,361)(242,363)
(243,362)(244,364)(245,377)(246,379)(247,378)(248,380)(249,373)(250,375)
(251,374)(252,376)(253,369)(254,371)(255,370)(256,372)(257,365)(258,367)
(259,366)(260,368)(261,401)(262,403)(263,402)(264,404)(265,417)(266,419)
(267,418)(268,420)(269,413)(270,415)(271,414)(272,416)(273,409)(274,411)
(275,410)(276,412)(277,405)(278,407)(279,406)(280,408)(281,381)(282,383)
(283,382)(284,384)(285,397)(286,399)(287,398)(288,400)(289,393)(290,395)
(291,394)(292,396)(293,389)(294,391)(295,390)(296,392)(297,385)(298,387)
(299,386)(300,388)(301,421)(302,423)(303,422)(304,424)(305,437)(306,439)
(307,438)(308,440)(309,433)(310,435)(311,434)(312,436)(313,429)(314,431)
(315,430)(316,432)(317,425)(318,427)(319,426)(320,428)(321,461)(322,463)
(323,462)(324,464)(325,477)(326,479)(327,478)(328,480)(329,473)(330,475)
(331,474)(332,476)(333,469)(334,471)(335,470)(336,472)(337,465)(338,467)
(339,466)(340,468)(341,441)(342,443)(343,442)(344,444)(345,457)(346,459)
(347,458)(348,460)(349,453)(350,455)(351,454)(352,456)(353,449)(354,451)
(355,450)(356,452)(357,445)(358,447)(359,446)(360,448);;
s2 := (  1,285)(  2,288)(  3,287)(  4,286)(  5,281)(  6,284)(  7,283)(  8,282)
(  9,297)( 10,300)( 11,299)( 12,298)( 13,293)( 14,296)( 15,295)( 16,294)
( 17,289)( 18,292)( 19,291)( 20,290)( 21,265)( 22,268)( 23,267)( 24,266)
( 25,261)( 26,264)( 27,263)( 28,262)( 29,277)( 30,280)( 31,279)( 32,278)
( 33,273)( 34,276)( 35,275)( 36,274)( 37,269)( 38,272)( 39,271)( 40,270)
( 41,245)( 42,248)( 43,247)( 44,246)( 45,241)( 46,244)( 47,243)( 48,242)
( 49,257)( 50,260)( 51,259)( 52,258)( 53,253)( 54,256)( 55,255)( 56,254)
( 57,249)( 58,252)( 59,251)( 60,250)( 61,345)( 62,348)( 63,347)( 64,346)
( 65,341)( 66,344)( 67,343)( 68,342)( 69,357)( 70,360)( 71,359)( 72,358)
( 73,353)( 74,356)( 75,355)( 76,354)( 77,349)( 78,352)( 79,351)( 80,350)
( 81,325)( 82,328)( 83,327)( 84,326)( 85,321)( 86,324)( 87,323)( 88,322)
( 89,337)( 90,340)( 91,339)( 92,338)( 93,333)( 94,336)( 95,335)( 96,334)
( 97,329)( 98,332)( 99,331)(100,330)(101,305)(102,308)(103,307)(104,306)
(105,301)(106,304)(107,303)(108,302)(109,317)(110,320)(111,319)(112,318)
(113,313)(114,316)(115,315)(116,314)(117,309)(118,312)(119,311)(120,310)
(121,465)(122,468)(123,467)(124,466)(125,461)(126,464)(127,463)(128,462)
(129,477)(130,480)(131,479)(132,478)(133,473)(134,476)(135,475)(136,474)
(137,469)(138,472)(139,471)(140,470)(141,445)(142,448)(143,447)(144,446)
(145,441)(146,444)(147,443)(148,442)(149,457)(150,460)(151,459)(152,458)
(153,453)(154,456)(155,455)(156,454)(157,449)(158,452)(159,451)(160,450)
(161,425)(162,428)(163,427)(164,426)(165,421)(166,424)(167,423)(168,422)
(169,437)(170,440)(171,439)(172,438)(173,433)(174,436)(175,435)(176,434)
(177,429)(178,432)(179,431)(180,430)(181,405)(182,408)(183,407)(184,406)
(185,401)(186,404)(187,403)(188,402)(189,417)(190,420)(191,419)(192,418)
(193,413)(194,416)(195,415)(196,414)(197,409)(198,412)(199,411)(200,410)
(201,385)(202,388)(203,387)(204,386)(205,381)(206,384)(207,383)(208,382)
(209,397)(210,400)(211,399)(212,398)(213,393)(214,396)(215,395)(216,394)
(217,389)(218,392)(219,391)(220,390)(221,365)(222,368)(223,367)(224,366)
(225,361)(226,364)(227,363)(228,362)(229,377)(230,380)(231,379)(232,378)
(233,373)(234,376)(235,375)(236,374)(237,369)(238,372)(239,371)(240,370);;
s3 := (481,482);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(482)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432)(433,435)(434,436)(437,439)(438,440)(441,443)(442,444)(445,447)
(446,448)(449,451)(450,452)(453,455)(454,456)(457,459)(458,460)(461,463)
(462,464)(465,467)(466,468)(469,471)(470,472)(473,475)(474,476)(477,479)
(478,480);
s1 := Sym(482)!(  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)
( 11, 14)( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)
( 27, 58)( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)
( 35, 50)( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)
( 66, 79)( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)
( 90,115)( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)
( 98,107)( 99,106)(100,108)(121,181)(122,183)(123,182)(124,184)(125,197)
(126,199)(127,198)(128,200)(129,193)(130,195)(131,194)(132,196)(133,189)
(134,191)(135,190)(136,192)(137,185)(138,187)(139,186)(140,188)(141,221)
(142,223)(143,222)(144,224)(145,237)(146,239)(147,238)(148,240)(149,233)
(150,235)(151,234)(152,236)(153,229)(154,231)(155,230)(156,232)(157,225)
(158,227)(159,226)(160,228)(161,201)(162,203)(163,202)(164,204)(165,217)
(166,219)(167,218)(168,220)(169,213)(170,215)(171,214)(172,216)(173,209)
(174,211)(175,210)(176,212)(177,205)(178,207)(179,206)(180,208)(241,361)
(242,363)(243,362)(244,364)(245,377)(246,379)(247,378)(248,380)(249,373)
(250,375)(251,374)(252,376)(253,369)(254,371)(255,370)(256,372)(257,365)
(258,367)(259,366)(260,368)(261,401)(262,403)(263,402)(264,404)(265,417)
(266,419)(267,418)(268,420)(269,413)(270,415)(271,414)(272,416)(273,409)
(274,411)(275,410)(276,412)(277,405)(278,407)(279,406)(280,408)(281,381)
(282,383)(283,382)(284,384)(285,397)(286,399)(287,398)(288,400)(289,393)
(290,395)(291,394)(292,396)(293,389)(294,391)(295,390)(296,392)(297,385)
(298,387)(299,386)(300,388)(301,421)(302,423)(303,422)(304,424)(305,437)
(306,439)(307,438)(308,440)(309,433)(310,435)(311,434)(312,436)(313,429)
(314,431)(315,430)(316,432)(317,425)(318,427)(319,426)(320,428)(321,461)
(322,463)(323,462)(324,464)(325,477)(326,479)(327,478)(328,480)(329,473)
(330,475)(331,474)(332,476)(333,469)(334,471)(335,470)(336,472)(337,465)
(338,467)(339,466)(340,468)(341,441)(342,443)(343,442)(344,444)(345,457)
(346,459)(347,458)(348,460)(349,453)(350,455)(351,454)(352,456)(353,449)
(354,451)(355,450)(356,452)(357,445)(358,447)(359,446)(360,448);
s2 := Sym(482)!(  1,285)(  2,288)(  3,287)(  4,286)(  5,281)(  6,284)(  7,283)
(  8,282)(  9,297)( 10,300)( 11,299)( 12,298)( 13,293)( 14,296)( 15,295)
( 16,294)( 17,289)( 18,292)( 19,291)( 20,290)( 21,265)( 22,268)( 23,267)
( 24,266)( 25,261)( 26,264)( 27,263)( 28,262)( 29,277)( 30,280)( 31,279)
( 32,278)( 33,273)( 34,276)( 35,275)( 36,274)( 37,269)( 38,272)( 39,271)
( 40,270)( 41,245)( 42,248)( 43,247)( 44,246)( 45,241)( 46,244)( 47,243)
( 48,242)( 49,257)( 50,260)( 51,259)( 52,258)( 53,253)( 54,256)( 55,255)
( 56,254)( 57,249)( 58,252)( 59,251)( 60,250)( 61,345)( 62,348)( 63,347)
( 64,346)( 65,341)( 66,344)( 67,343)( 68,342)( 69,357)( 70,360)( 71,359)
( 72,358)( 73,353)( 74,356)( 75,355)( 76,354)( 77,349)( 78,352)( 79,351)
( 80,350)( 81,325)( 82,328)( 83,327)( 84,326)( 85,321)( 86,324)( 87,323)
( 88,322)( 89,337)( 90,340)( 91,339)( 92,338)( 93,333)( 94,336)( 95,335)
( 96,334)( 97,329)( 98,332)( 99,331)(100,330)(101,305)(102,308)(103,307)
(104,306)(105,301)(106,304)(107,303)(108,302)(109,317)(110,320)(111,319)
(112,318)(113,313)(114,316)(115,315)(116,314)(117,309)(118,312)(119,311)
(120,310)(121,465)(122,468)(123,467)(124,466)(125,461)(126,464)(127,463)
(128,462)(129,477)(130,480)(131,479)(132,478)(133,473)(134,476)(135,475)
(136,474)(137,469)(138,472)(139,471)(140,470)(141,445)(142,448)(143,447)
(144,446)(145,441)(146,444)(147,443)(148,442)(149,457)(150,460)(151,459)
(152,458)(153,453)(154,456)(155,455)(156,454)(157,449)(158,452)(159,451)
(160,450)(161,425)(162,428)(163,427)(164,426)(165,421)(166,424)(167,423)
(168,422)(169,437)(170,440)(171,439)(172,438)(173,433)(174,436)(175,435)
(176,434)(177,429)(178,432)(179,431)(180,430)(181,405)(182,408)(183,407)
(184,406)(185,401)(186,404)(187,403)(188,402)(189,417)(190,420)(191,419)
(192,418)(193,413)(194,416)(195,415)(196,414)(197,409)(198,412)(199,411)
(200,410)(201,385)(202,388)(203,387)(204,386)(205,381)(206,384)(207,383)
(208,382)(209,397)(210,400)(211,399)(212,398)(213,393)(214,396)(215,395)
(216,394)(217,389)(218,392)(219,391)(220,390)(221,365)(222,368)(223,367)
(224,366)(225,361)(226,364)(227,363)(228,362)(229,377)(230,380)(231,379)
(232,378)(233,373)(234,376)(235,375)(236,374)(237,369)(238,372)(239,371)
(240,370);
s3 := Sym(482)!(481,482);
poly := sub<Sym(482)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope