Polytope of Type {4,30,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,30,8}*1920b
if this polytope has a name.
Group : SmallGroup(1920,239556)
Rank : 4
Schlafli Type : {4,30,8}
Number of vertices, edges, etc : 4, 60, 120, 8
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,30,4}*960c
   4-fold quotients : {4,30,2}*480b
   5-fold quotients : {4,6,8}*384b
   8-fold quotients : {4,15,2}*240
   10-fold quotients : {4,6,4}*192c
   20-fold quotients : {4,6,2}*96c
   40-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432)
(433,435)(434,436)(437,439)(438,440)(441,443)(442,444)(445,447)(446,448)
(449,451)(450,452)(453,455)(454,456)(457,459)(458,460)(461,463)(462,464)
(465,467)(466,468)(469,471)(470,472)(473,475)(474,476)(477,479)(478,480);;
s1 := (  3,  4)(  5, 17)(  6, 18)(  7, 20)(  8, 19)(  9, 13)( 10, 14)( 11, 16)
( 12, 15)( 21, 41)( 22, 42)( 23, 44)( 24, 43)( 25, 57)( 26, 58)( 27, 60)
( 28, 59)( 29, 53)( 30, 54)( 31, 56)( 32, 55)( 33, 49)( 34, 50)( 35, 52)
( 36, 51)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 63, 64)( 65, 77)( 66, 78)
( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)( 81,101)( 82,102)
( 83,104)( 84,103)( 85,117)( 86,118)( 87,120)( 88,119)( 89,113)( 90,114)
( 91,116)( 92,115)( 93,109)( 94,110)( 95,112)( 96,111)( 97,105)( 98,106)
( 99,108)(100,107)(123,124)(125,137)(126,138)(127,140)(128,139)(129,133)
(130,134)(131,136)(132,135)(141,161)(142,162)(143,164)(144,163)(145,177)
(146,178)(147,180)(148,179)(149,173)(150,174)(151,176)(152,175)(153,169)
(154,170)(155,172)(156,171)(157,165)(158,166)(159,168)(160,167)(183,184)
(185,197)(186,198)(187,200)(188,199)(189,193)(190,194)(191,196)(192,195)
(201,221)(202,222)(203,224)(204,223)(205,237)(206,238)(207,240)(208,239)
(209,233)(210,234)(211,236)(212,235)(213,229)(214,230)(215,232)(216,231)
(217,225)(218,226)(219,228)(220,227)(243,244)(245,257)(246,258)(247,260)
(248,259)(249,253)(250,254)(251,256)(252,255)(261,281)(262,282)(263,284)
(264,283)(265,297)(266,298)(267,300)(268,299)(269,293)(270,294)(271,296)
(272,295)(273,289)(274,290)(275,292)(276,291)(277,285)(278,286)(279,288)
(280,287)(303,304)(305,317)(306,318)(307,320)(308,319)(309,313)(310,314)
(311,316)(312,315)(321,341)(322,342)(323,344)(324,343)(325,357)(326,358)
(327,360)(328,359)(329,353)(330,354)(331,356)(332,355)(333,349)(334,350)
(335,352)(336,351)(337,345)(338,346)(339,348)(340,347)(363,364)(365,377)
(366,378)(367,380)(368,379)(369,373)(370,374)(371,376)(372,375)(381,401)
(382,402)(383,404)(384,403)(385,417)(386,418)(387,420)(388,419)(389,413)
(390,414)(391,416)(392,415)(393,409)(394,410)(395,412)(396,411)(397,405)
(398,406)(399,408)(400,407)(423,424)(425,437)(426,438)(427,440)(428,439)
(429,433)(430,434)(431,436)(432,435)(441,461)(442,462)(443,464)(444,463)
(445,477)(446,478)(447,480)(448,479)(449,473)(450,474)(451,476)(452,475)
(453,469)(454,470)(455,472)(456,471)(457,465)(458,466)(459,468)(460,467);;
s2 := (  1, 25)(  2, 28)(  3, 27)(  4, 26)(  5, 21)(  6, 24)(  7, 23)(  8, 22)
(  9, 37)( 10, 40)( 11, 39)( 12, 38)( 13, 33)( 14, 36)( 15, 35)( 16, 34)
( 17, 29)( 18, 32)( 19, 31)( 20, 30)( 41, 45)( 42, 48)( 43, 47)( 44, 46)
( 49, 57)( 50, 60)( 51, 59)( 52, 58)( 54, 56)( 61, 85)( 62, 88)( 63, 87)
( 64, 86)( 65, 81)( 66, 84)( 67, 83)( 68, 82)( 69, 97)( 70,100)( 71, 99)
( 72, 98)( 73, 93)( 74, 96)( 75, 95)( 76, 94)( 77, 89)( 78, 92)( 79, 91)
( 80, 90)(101,105)(102,108)(103,107)(104,106)(109,117)(110,120)(111,119)
(112,118)(114,116)(121,205)(122,208)(123,207)(124,206)(125,201)(126,204)
(127,203)(128,202)(129,217)(130,220)(131,219)(132,218)(133,213)(134,216)
(135,215)(136,214)(137,209)(138,212)(139,211)(140,210)(141,185)(142,188)
(143,187)(144,186)(145,181)(146,184)(147,183)(148,182)(149,197)(150,200)
(151,199)(152,198)(153,193)(154,196)(155,195)(156,194)(157,189)(158,192)
(159,191)(160,190)(161,225)(162,228)(163,227)(164,226)(165,221)(166,224)
(167,223)(168,222)(169,237)(170,240)(171,239)(172,238)(173,233)(174,236)
(175,235)(176,234)(177,229)(178,232)(179,231)(180,230)(241,385)(242,388)
(243,387)(244,386)(245,381)(246,384)(247,383)(248,382)(249,397)(250,400)
(251,399)(252,398)(253,393)(254,396)(255,395)(256,394)(257,389)(258,392)
(259,391)(260,390)(261,365)(262,368)(263,367)(264,366)(265,361)(266,364)
(267,363)(268,362)(269,377)(270,380)(271,379)(272,378)(273,373)(274,376)
(275,375)(276,374)(277,369)(278,372)(279,371)(280,370)(281,405)(282,408)
(283,407)(284,406)(285,401)(286,404)(287,403)(288,402)(289,417)(290,420)
(291,419)(292,418)(293,413)(294,416)(295,415)(296,414)(297,409)(298,412)
(299,411)(300,410)(301,445)(302,448)(303,447)(304,446)(305,441)(306,444)
(307,443)(308,442)(309,457)(310,460)(311,459)(312,458)(313,453)(314,456)
(315,455)(316,454)(317,449)(318,452)(319,451)(320,450)(321,425)(322,428)
(323,427)(324,426)(325,421)(326,424)(327,423)(328,422)(329,437)(330,440)
(331,439)(332,438)(333,433)(334,436)(335,435)(336,434)(337,429)(338,432)
(339,431)(340,430)(341,465)(342,468)(343,467)(344,466)(345,461)(346,464)
(347,463)(348,462)(349,477)(350,480)(351,479)(352,478)(353,473)(354,476)
(355,475)(356,474)(357,469)(358,472)(359,471)(360,470);;
s3 := (  1,241)(  2,242)(  3,243)(  4,244)(  5,245)(  6,246)(  7,247)(  8,248)
(  9,249)( 10,250)( 11,251)( 12,252)( 13,253)( 14,254)( 15,255)( 16,256)
( 17,257)( 18,258)( 19,259)( 20,260)( 21,261)( 22,262)( 23,263)( 24,264)
( 25,265)( 26,266)( 27,267)( 28,268)( 29,269)( 30,270)( 31,271)( 32,272)
( 33,273)( 34,274)( 35,275)( 36,276)( 37,277)( 38,278)( 39,279)( 40,280)
( 41,281)( 42,282)( 43,283)( 44,284)( 45,285)( 46,286)( 47,287)( 48,288)
( 49,289)( 50,290)( 51,291)( 52,292)( 53,293)( 54,294)( 55,295)( 56,296)
( 57,297)( 58,298)( 59,299)( 60,300)( 61,301)( 62,302)( 63,303)( 64,304)
( 65,305)( 66,306)( 67,307)( 68,308)( 69,309)( 70,310)( 71,311)( 72,312)
( 73,313)( 74,314)( 75,315)( 76,316)( 77,317)( 78,318)( 79,319)( 80,320)
( 81,321)( 82,322)( 83,323)( 84,324)( 85,325)( 86,326)( 87,327)( 88,328)
( 89,329)( 90,330)( 91,331)( 92,332)( 93,333)( 94,334)( 95,335)( 96,336)
( 97,337)( 98,338)( 99,339)(100,340)(101,341)(102,342)(103,343)(104,344)
(105,345)(106,346)(107,347)(108,348)(109,349)(110,350)(111,351)(112,352)
(113,353)(114,354)(115,355)(116,356)(117,357)(118,358)(119,359)(120,360)
(121,421)(122,422)(123,423)(124,424)(125,425)(126,426)(127,427)(128,428)
(129,429)(130,430)(131,431)(132,432)(133,433)(134,434)(135,435)(136,436)
(137,437)(138,438)(139,439)(140,440)(141,441)(142,442)(143,443)(144,444)
(145,445)(146,446)(147,447)(148,448)(149,449)(150,450)(151,451)(152,452)
(153,453)(154,454)(155,455)(156,456)(157,457)(158,458)(159,459)(160,460)
(161,461)(162,462)(163,463)(164,464)(165,465)(166,466)(167,467)(168,468)
(169,469)(170,470)(171,471)(172,472)(173,473)(174,474)(175,475)(176,476)
(177,477)(178,478)(179,479)(180,480)(181,361)(182,362)(183,363)(184,364)
(185,365)(186,366)(187,367)(188,368)(189,369)(190,370)(191,371)(192,372)
(193,373)(194,374)(195,375)(196,376)(197,377)(198,378)(199,379)(200,380)
(201,381)(202,382)(203,383)(204,384)(205,385)(206,386)(207,387)(208,388)
(209,389)(210,390)(211,391)(212,392)(213,393)(214,394)(215,395)(216,396)
(217,397)(218,398)(219,399)(220,400)(221,401)(222,402)(223,403)(224,404)
(225,405)(226,406)(227,407)(228,408)(229,409)(230,410)(231,411)(232,412)
(233,413)(234,414)(235,415)(236,416)(237,417)(238,418)(239,419)(240,420);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(480)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432)(433,435)(434,436)(437,439)(438,440)(441,443)(442,444)(445,447)
(446,448)(449,451)(450,452)(453,455)(454,456)(457,459)(458,460)(461,463)
(462,464)(465,467)(466,468)(469,471)(470,472)(473,475)(474,476)(477,479)
(478,480);
s1 := Sym(480)!(  3,  4)(  5, 17)(  6, 18)(  7, 20)(  8, 19)(  9, 13)( 10, 14)
( 11, 16)( 12, 15)( 21, 41)( 22, 42)( 23, 44)( 24, 43)( 25, 57)( 26, 58)
( 27, 60)( 28, 59)( 29, 53)( 30, 54)( 31, 56)( 32, 55)( 33, 49)( 34, 50)
( 35, 52)( 36, 51)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 63, 64)( 65, 77)
( 66, 78)( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)( 81,101)
( 82,102)( 83,104)( 84,103)( 85,117)( 86,118)( 87,120)( 88,119)( 89,113)
( 90,114)( 91,116)( 92,115)( 93,109)( 94,110)( 95,112)( 96,111)( 97,105)
( 98,106)( 99,108)(100,107)(123,124)(125,137)(126,138)(127,140)(128,139)
(129,133)(130,134)(131,136)(132,135)(141,161)(142,162)(143,164)(144,163)
(145,177)(146,178)(147,180)(148,179)(149,173)(150,174)(151,176)(152,175)
(153,169)(154,170)(155,172)(156,171)(157,165)(158,166)(159,168)(160,167)
(183,184)(185,197)(186,198)(187,200)(188,199)(189,193)(190,194)(191,196)
(192,195)(201,221)(202,222)(203,224)(204,223)(205,237)(206,238)(207,240)
(208,239)(209,233)(210,234)(211,236)(212,235)(213,229)(214,230)(215,232)
(216,231)(217,225)(218,226)(219,228)(220,227)(243,244)(245,257)(246,258)
(247,260)(248,259)(249,253)(250,254)(251,256)(252,255)(261,281)(262,282)
(263,284)(264,283)(265,297)(266,298)(267,300)(268,299)(269,293)(270,294)
(271,296)(272,295)(273,289)(274,290)(275,292)(276,291)(277,285)(278,286)
(279,288)(280,287)(303,304)(305,317)(306,318)(307,320)(308,319)(309,313)
(310,314)(311,316)(312,315)(321,341)(322,342)(323,344)(324,343)(325,357)
(326,358)(327,360)(328,359)(329,353)(330,354)(331,356)(332,355)(333,349)
(334,350)(335,352)(336,351)(337,345)(338,346)(339,348)(340,347)(363,364)
(365,377)(366,378)(367,380)(368,379)(369,373)(370,374)(371,376)(372,375)
(381,401)(382,402)(383,404)(384,403)(385,417)(386,418)(387,420)(388,419)
(389,413)(390,414)(391,416)(392,415)(393,409)(394,410)(395,412)(396,411)
(397,405)(398,406)(399,408)(400,407)(423,424)(425,437)(426,438)(427,440)
(428,439)(429,433)(430,434)(431,436)(432,435)(441,461)(442,462)(443,464)
(444,463)(445,477)(446,478)(447,480)(448,479)(449,473)(450,474)(451,476)
(452,475)(453,469)(454,470)(455,472)(456,471)(457,465)(458,466)(459,468)
(460,467);
s2 := Sym(480)!(  1, 25)(  2, 28)(  3, 27)(  4, 26)(  5, 21)(  6, 24)(  7, 23)
(  8, 22)(  9, 37)( 10, 40)( 11, 39)( 12, 38)( 13, 33)( 14, 36)( 15, 35)
( 16, 34)( 17, 29)( 18, 32)( 19, 31)( 20, 30)( 41, 45)( 42, 48)( 43, 47)
( 44, 46)( 49, 57)( 50, 60)( 51, 59)( 52, 58)( 54, 56)( 61, 85)( 62, 88)
( 63, 87)( 64, 86)( 65, 81)( 66, 84)( 67, 83)( 68, 82)( 69, 97)( 70,100)
( 71, 99)( 72, 98)( 73, 93)( 74, 96)( 75, 95)( 76, 94)( 77, 89)( 78, 92)
( 79, 91)( 80, 90)(101,105)(102,108)(103,107)(104,106)(109,117)(110,120)
(111,119)(112,118)(114,116)(121,205)(122,208)(123,207)(124,206)(125,201)
(126,204)(127,203)(128,202)(129,217)(130,220)(131,219)(132,218)(133,213)
(134,216)(135,215)(136,214)(137,209)(138,212)(139,211)(140,210)(141,185)
(142,188)(143,187)(144,186)(145,181)(146,184)(147,183)(148,182)(149,197)
(150,200)(151,199)(152,198)(153,193)(154,196)(155,195)(156,194)(157,189)
(158,192)(159,191)(160,190)(161,225)(162,228)(163,227)(164,226)(165,221)
(166,224)(167,223)(168,222)(169,237)(170,240)(171,239)(172,238)(173,233)
(174,236)(175,235)(176,234)(177,229)(178,232)(179,231)(180,230)(241,385)
(242,388)(243,387)(244,386)(245,381)(246,384)(247,383)(248,382)(249,397)
(250,400)(251,399)(252,398)(253,393)(254,396)(255,395)(256,394)(257,389)
(258,392)(259,391)(260,390)(261,365)(262,368)(263,367)(264,366)(265,361)
(266,364)(267,363)(268,362)(269,377)(270,380)(271,379)(272,378)(273,373)
(274,376)(275,375)(276,374)(277,369)(278,372)(279,371)(280,370)(281,405)
(282,408)(283,407)(284,406)(285,401)(286,404)(287,403)(288,402)(289,417)
(290,420)(291,419)(292,418)(293,413)(294,416)(295,415)(296,414)(297,409)
(298,412)(299,411)(300,410)(301,445)(302,448)(303,447)(304,446)(305,441)
(306,444)(307,443)(308,442)(309,457)(310,460)(311,459)(312,458)(313,453)
(314,456)(315,455)(316,454)(317,449)(318,452)(319,451)(320,450)(321,425)
(322,428)(323,427)(324,426)(325,421)(326,424)(327,423)(328,422)(329,437)
(330,440)(331,439)(332,438)(333,433)(334,436)(335,435)(336,434)(337,429)
(338,432)(339,431)(340,430)(341,465)(342,468)(343,467)(344,466)(345,461)
(346,464)(347,463)(348,462)(349,477)(350,480)(351,479)(352,478)(353,473)
(354,476)(355,475)(356,474)(357,469)(358,472)(359,471)(360,470);
s3 := Sym(480)!(  1,241)(  2,242)(  3,243)(  4,244)(  5,245)(  6,246)(  7,247)
(  8,248)(  9,249)( 10,250)( 11,251)( 12,252)( 13,253)( 14,254)( 15,255)
( 16,256)( 17,257)( 18,258)( 19,259)( 20,260)( 21,261)( 22,262)( 23,263)
( 24,264)( 25,265)( 26,266)( 27,267)( 28,268)( 29,269)( 30,270)( 31,271)
( 32,272)( 33,273)( 34,274)( 35,275)( 36,276)( 37,277)( 38,278)( 39,279)
( 40,280)( 41,281)( 42,282)( 43,283)( 44,284)( 45,285)( 46,286)( 47,287)
( 48,288)( 49,289)( 50,290)( 51,291)( 52,292)( 53,293)( 54,294)( 55,295)
( 56,296)( 57,297)( 58,298)( 59,299)( 60,300)( 61,301)( 62,302)( 63,303)
( 64,304)( 65,305)( 66,306)( 67,307)( 68,308)( 69,309)( 70,310)( 71,311)
( 72,312)( 73,313)( 74,314)( 75,315)( 76,316)( 77,317)( 78,318)( 79,319)
( 80,320)( 81,321)( 82,322)( 83,323)( 84,324)( 85,325)( 86,326)( 87,327)
( 88,328)( 89,329)( 90,330)( 91,331)( 92,332)( 93,333)( 94,334)( 95,335)
( 96,336)( 97,337)( 98,338)( 99,339)(100,340)(101,341)(102,342)(103,343)
(104,344)(105,345)(106,346)(107,347)(108,348)(109,349)(110,350)(111,351)
(112,352)(113,353)(114,354)(115,355)(116,356)(117,357)(118,358)(119,359)
(120,360)(121,421)(122,422)(123,423)(124,424)(125,425)(126,426)(127,427)
(128,428)(129,429)(130,430)(131,431)(132,432)(133,433)(134,434)(135,435)
(136,436)(137,437)(138,438)(139,439)(140,440)(141,441)(142,442)(143,443)
(144,444)(145,445)(146,446)(147,447)(148,448)(149,449)(150,450)(151,451)
(152,452)(153,453)(154,454)(155,455)(156,456)(157,457)(158,458)(159,459)
(160,460)(161,461)(162,462)(163,463)(164,464)(165,465)(166,466)(167,467)
(168,468)(169,469)(170,470)(171,471)(172,472)(173,473)(174,474)(175,475)
(176,476)(177,477)(178,478)(179,479)(180,480)(181,361)(182,362)(183,363)
(184,364)(185,365)(186,366)(187,367)(188,368)(189,369)(190,370)(191,371)
(192,372)(193,373)(194,374)(195,375)(196,376)(197,377)(198,378)(199,379)
(200,380)(201,381)(202,382)(203,383)(204,384)(205,385)(206,386)(207,387)
(208,388)(209,389)(210,390)(211,391)(212,392)(213,393)(214,394)(215,395)
(216,396)(217,397)(218,398)(219,399)(220,400)(221,401)(222,402)(223,403)
(224,404)(225,405)(226,406)(227,407)(228,408)(229,409)(230,410)(231,411)
(232,412)(233,413)(234,414)(235,415)(236,416)(237,417)(238,418)(239,419)
(240,420);
poly := sub<Sym(480)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope