Polytope of Type {8,2,4,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,4,15}*1920
if this polytope has a name.
Group : SmallGroup(1920,239556)
Rank : 5
Schlafli Type : {8,2,4,15}
Number of vertices, edges, etc : 8, 8, 4, 30, 15
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,4,15}*960
   4-fold quotients : {2,2,4,15}*480
   5-fold quotients : {8,2,4,3}*384
   10-fold quotients : {4,2,4,3}*192
   20-fold quotients : {2,2,4,3}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := ( 9,12)(10,14)(11,16)(13,19)(15,23)(17,18)(20,24)(21,22)(25,28)(26,27);;
s3 := (10,11)(12,17)(13,15)(14,20)(16,21)(19,25)(22,24)(23,26)(27,28);;
s4 := ( 9,10)(11,13)(12,14)(16,19)(17,22)(18,21)(20,27)(24,26)(25,28);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(28)!(2,3)(4,5)(6,7);
s1 := Sym(28)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(28)!( 9,12)(10,14)(11,16)(13,19)(15,23)(17,18)(20,24)(21,22)(25,28)
(26,27);
s3 := Sym(28)!(10,11)(12,17)(13,15)(14,20)(16,21)(19,25)(22,24)(23,26)(27,28);
s4 := Sym(28)!( 9,10)(11,13)(12,14)(16,19)(17,22)(18,21)(20,27)(24,26)(25,28);
poly := sub<Sym(28)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope