Polytope of Type {3,2,5,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,5,10}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240046)
Rank : 5
Schlafli Type : {3,2,5,10}
Number of vertices, edges, etc : 3, 3, 16, 80, 32
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,5,5}*960
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (  4,164)(  5,165)(  6,184)(  7,185)(  8,190)(  9,191)( 10,178)( 11,179)
( 12,173)( 13,172)( 14,192)( 15,193)( 16,183)( 17,182)( 18,170)( 19,171)
( 20,188)( 21,189)( 22,177)( 23,176)( 24,166)( 25,167)( 26,187)( 27,186)
( 28,180)( 29,181)( 30,168)( 31,169)( 32,174)( 33,175)( 34,194)( 35,195)
( 36,292)( 37,293)( 38,312)( 39,313)( 40,318)( 41,319)( 42,306)( 43,307)
( 44,301)( 45,300)( 46,320)( 47,321)( 48,311)( 49,310)( 50,298)( 51,299)
( 52,316)( 53,317)( 54,305)( 55,304)( 56,294)( 57,295)( 58,315)( 59,314)
( 60,308)( 61,309)( 62,296)( 63,297)( 64,302)( 65,303)( 66,322)( 67,323)
( 68,260)( 69,261)( 70,280)( 71,281)( 72,286)( 73,287)( 74,274)( 75,275)
( 76,269)( 77,268)( 78,288)( 79,289)( 80,279)( 81,278)( 82,266)( 83,267)
( 84,284)( 85,285)( 86,273)( 87,272)( 88,262)( 89,263)( 90,283)( 91,282)
( 92,276)( 93,277)( 94,264)( 95,265)( 96,270)( 97,271)( 98,290)( 99,291)
(100,228)(101,229)(102,248)(103,249)(104,254)(105,255)(106,242)(107,243)
(108,237)(109,236)(110,256)(111,257)(112,247)(113,246)(114,234)(115,235)
(116,252)(117,253)(118,241)(119,240)(120,230)(121,231)(122,251)(123,250)
(124,244)(125,245)(126,232)(127,233)(128,238)(129,239)(130,258)(131,259)
(132,196)(133,197)(134,216)(135,217)(136,222)(137,223)(138,210)(139,211)
(140,205)(141,204)(142,224)(143,225)(144,215)(145,214)(146,202)(147,203)
(148,220)(149,221)(150,209)(151,208)(152,198)(153,199)(154,219)(155,218)
(156,212)(157,213)(158,200)(159,201)(160,206)(161,207)(162,226)(163,227);;
s3 := (  4,196)(  5,197)(  6,226)(  7,227)(  8,201)(  9,200)( 10,222)( 11,223)
( 12,209)( 13,208)( 14,214)( 15,215)( 16,205)( 17,204)( 18,219)( 19,218)
( 20,217)( 21,216)( 22,206)( 23,207)( 24,213)( 25,212)( 26,211)( 27,210)
( 28,220)( 29,221)( 30,202)( 31,203)( 32,225)( 33,224)( 34,198)( 35,199)
( 36,164)( 37,165)( 38,194)( 39,195)( 40,169)( 41,168)( 42,190)( 43,191)
( 44,177)( 45,176)( 46,182)( 47,183)( 48,173)( 49,172)( 50,187)( 51,186)
( 52,185)( 53,184)( 54,174)( 55,175)( 56,181)( 57,180)( 58,179)( 59,178)
( 60,188)( 61,189)( 62,170)( 63,171)( 64,193)( 65,192)( 66,166)( 67,167)
( 68,292)( 69,293)( 70,322)( 71,323)( 72,297)( 73,296)( 74,318)( 75,319)
( 76,305)( 77,304)( 78,310)( 79,311)( 80,301)( 81,300)( 82,315)( 83,314)
( 84,313)( 85,312)( 86,302)( 87,303)( 88,309)( 89,308)( 90,307)( 91,306)
( 92,316)( 93,317)( 94,298)( 95,299)( 96,321)( 97,320)( 98,294)( 99,295)
(100,260)(101,261)(102,290)(103,291)(104,265)(105,264)(106,286)(107,287)
(108,273)(109,272)(110,278)(111,279)(112,269)(113,268)(114,283)(115,282)
(116,281)(117,280)(118,270)(119,271)(120,277)(121,276)(122,275)(123,274)
(124,284)(125,285)(126,266)(127,267)(128,289)(129,288)(130,262)(131,263)
(132,228)(133,229)(134,258)(135,259)(136,233)(137,232)(138,254)(139,255)
(140,241)(141,240)(142,246)(143,247)(144,237)(145,236)(146,251)(147,250)
(148,249)(149,248)(150,238)(151,239)(152,245)(153,244)(154,243)(155,242)
(156,252)(157,253)(158,234)(159,235)(160,257)(161,256)(162,230)(163,231);;
s4 := (  4,195)(  5,194)(  6,174)(  7,175)(  8,168)(  9,169)( 10,181)( 11,180)
( 12,186)( 13,187)( 14,166)( 15,167)( 16,177)( 17,176)( 18,189)( 19,188)
( 20,171)( 21,170)( 22,183)( 23,182)( 24,192)( 25,193)( 26,172)( 27,173)
( 28,179)( 29,178)( 30,190)( 31,191)( 32,184)( 33,185)( 34,165)( 35,164)
( 36,323)( 37,322)( 38,302)( 39,303)( 40,296)( 41,297)( 42,309)( 43,308)
( 44,314)( 45,315)( 46,294)( 47,295)( 48,305)( 49,304)( 50,317)( 51,316)
( 52,299)( 53,298)( 54,311)( 55,310)( 56,320)( 57,321)( 58,300)( 59,301)
( 60,307)( 61,306)( 62,318)( 63,319)( 64,312)( 65,313)( 66,293)( 67,292)
( 68,291)( 69,290)( 70,270)( 71,271)( 72,264)( 73,265)( 74,277)( 75,276)
( 76,282)( 77,283)( 78,262)( 79,263)( 80,273)( 81,272)( 82,285)( 83,284)
( 84,267)( 85,266)( 86,279)( 87,278)( 88,288)( 89,289)( 90,268)( 91,269)
( 92,275)( 93,274)( 94,286)( 95,287)( 96,280)( 97,281)( 98,261)( 99,260)
(100,259)(101,258)(102,238)(103,239)(104,232)(105,233)(106,245)(107,244)
(108,250)(109,251)(110,230)(111,231)(112,241)(113,240)(114,253)(115,252)
(116,235)(117,234)(118,247)(119,246)(120,256)(121,257)(122,236)(123,237)
(124,243)(125,242)(126,254)(127,255)(128,248)(129,249)(130,229)(131,228)
(132,227)(133,226)(134,206)(135,207)(136,200)(137,201)(138,213)(139,212)
(140,218)(141,219)(142,198)(143,199)(144,209)(145,208)(146,221)(147,220)
(148,203)(149,202)(150,215)(151,214)(152,224)(153,225)(154,204)(155,205)
(156,211)(157,210)(158,222)(159,223)(160,216)(161,217)(162,197)(163,196);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s2*s3*s2*s3*s4*s3*s4*s3*s4*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(323)!(2,3);
s1 := Sym(323)!(1,2);
s2 := Sym(323)!(  4,164)(  5,165)(  6,184)(  7,185)(  8,190)(  9,191)( 10,178)
( 11,179)( 12,173)( 13,172)( 14,192)( 15,193)( 16,183)( 17,182)( 18,170)
( 19,171)( 20,188)( 21,189)( 22,177)( 23,176)( 24,166)( 25,167)( 26,187)
( 27,186)( 28,180)( 29,181)( 30,168)( 31,169)( 32,174)( 33,175)( 34,194)
( 35,195)( 36,292)( 37,293)( 38,312)( 39,313)( 40,318)( 41,319)( 42,306)
( 43,307)( 44,301)( 45,300)( 46,320)( 47,321)( 48,311)( 49,310)( 50,298)
( 51,299)( 52,316)( 53,317)( 54,305)( 55,304)( 56,294)( 57,295)( 58,315)
( 59,314)( 60,308)( 61,309)( 62,296)( 63,297)( 64,302)( 65,303)( 66,322)
( 67,323)( 68,260)( 69,261)( 70,280)( 71,281)( 72,286)( 73,287)( 74,274)
( 75,275)( 76,269)( 77,268)( 78,288)( 79,289)( 80,279)( 81,278)( 82,266)
( 83,267)( 84,284)( 85,285)( 86,273)( 87,272)( 88,262)( 89,263)( 90,283)
( 91,282)( 92,276)( 93,277)( 94,264)( 95,265)( 96,270)( 97,271)( 98,290)
( 99,291)(100,228)(101,229)(102,248)(103,249)(104,254)(105,255)(106,242)
(107,243)(108,237)(109,236)(110,256)(111,257)(112,247)(113,246)(114,234)
(115,235)(116,252)(117,253)(118,241)(119,240)(120,230)(121,231)(122,251)
(123,250)(124,244)(125,245)(126,232)(127,233)(128,238)(129,239)(130,258)
(131,259)(132,196)(133,197)(134,216)(135,217)(136,222)(137,223)(138,210)
(139,211)(140,205)(141,204)(142,224)(143,225)(144,215)(145,214)(146,202)
(147,203)(148,220)(149,221)(150,209)(151,208)(152,198)(153,199)(154,219)
(155,218)(156,212)(157,213)(158,200)(159,201)(160,206)(161,207)(162,226)
(163,227);
s3 := Sym(323)!(  4,196)(  5,197)(  6,226)(  7,227)(  8,201)(  9,200)( 10,222)
( 11,223)( 12,209)( 13,208)( 14,214)( 15,215)( 16,205)( 17,204)( 18,219)
( 19,218)( 20,217)( 21,216)( 22,206)( 23,207)( 24,213)( 25,212)( 26,211)
( 27,210)( 28,220)( 29,221)( 30,202)( 31,203)( 32,225)( 33,224)( 34,198)
( 35,199)( 36,164)( 37,165)( 38,194)( 39,195)( 40,169)( 41,168)( 42,190)
( 43,191)( 44,177)( 45,176)( 46,182)( 47,183)( 48,173)( 49,172)( 50,187)
( 51,186)( 52,185)( 53,184)( 54,174)( 55,175)( 56,181)( 57,180)( 58,179)
( 59,178)( 60,188)( 61,189)( 62,170)( 63,171)( 64,193)( 65,192)( 66,166)
( 67,167)( 68,292)( 69,293)( 70,322)( 71,323)( 72,297)( 73,296)( 74,318)
( 75,319)( 76,305)( 77,304)( 78,310)( 79,311)( 80,301)( 81,300)( 82,315)
( 83,314)( 84,313)( 85,312)( 86,302)( 87,303)( 88,309)( 89,308)( 90,307)
( 91,306)( 92,316)( 93,317)( 94,298)( 95,299)( 96,321)( 97,320)( 98,294)
( 99,295)(100,260)(101,261)(102,290)(103,291)(104,265)(105,264)(106,286)
(107,287)(108,273)(109,272)(110,278)(111,279)(112,269)(113,268)(114,283)
(115,282)(116,281)(117,280)(118,270)(119,271)(120,277)(121,276)(122,275)
(123,274)(124,284)(125,285)(126,266)(127,267)(128,289)(129,288)(130,262)
(131,263)(132,228)(133,229)(134,258)(135,259)(136,233)(137,232)(138,254)
(139,255)(140,241)(141,240)(142,246)(143,247)(144,237)(145,236)(146,251)
(147,250)(148,249)(149,248)(150,238)(151,239)(152,245)(153,244)(154,243)
(155,242)(156,252)(157,253)(158,234)(159,235)(160,257)(161,256)(162,230)
(163,231);
s4 := Sym(323)!(  4,195)(  5,194)(  6,174)(  7,175)(  8,168)(  9,169)( 10,181)
( 11,180)( 12,186)( 13,187)( 14,166)( 15,167)( 16,177)( 17,176)( 18,189)
( 19,188)( 20,171)( 21,170)( 22,183)( 23,182)( 24,192)( 25,193)( 26,172)
( 27,173)( 28,179)( 29,178)( 30,190)( 31,191)( 32,184)( 33,185)( 34,165)
( 35,164)( 36,323)( 37,322)( 38,302)( 39,303)( 40,296)( 41,297)( 42,309)
( 43,308)( 44,314)( 45,315)( 46,294)( 47,295)( 48,305)( 49,304)( 50,317)
( 51,316)( 52,299)( 53,298)( 54,311)( 55,310)( 56,320)( 57,321)( 58,300)
( 59,301)( 60,307)( 61,306)( 62,318)( 63,319)( 64,312)( 65,313)( 66,293)
( 67,292)( 68,291)( 69,290)( 70,270)( 71,271)( 72,264)( 73,265)( 74,277)
( 75,276)( 76,282)( 77,283)( 78,262)( 79,263)( 80,273)( 81,272)( 82,285)
( 83,284)( 84,267)( 85,266)( 86,279)( 87,278)( 88,288)( 89,289)( 90,268)
( 91,269)( 92,275)( 93,274)( 94,286)( 95,287)( 96,280)( 97,281)( 98,261)
( 99,260)(100,259)(101,258)(102,238)(103,239)(104,232)(105,233)(106,245)
(107,244)(108,250)(109,251)(110,230)(111,231)(112,241)(113,240)(114,253)
(115,252)(116,235)(117,234)(118,247)(119,246)(120,256)(121,257)(122,236)
(123,237)(124,243)(125,242)(126,254)(127,255)(128,248)(129,249)(130,229)
(131,228)(132,227)(133,226)(134,206)(135,207)(136,200)(137,201)(138,213)
(139,212)(140,218)(141,219)(142,198)(143,199)(144,209)(145,208)(146,221)
(147,220)(148,203)(149,202)(150,215)(151,214)(152,224)(153,225)(154,204)
(155,205)(156,211)(157,210)(158,222)(159,223)(160,216)(161,217)(162,197)
(163,196);
poly := sub<Sym(323)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s2*s3*s2*s3*s4*s3*s4*s3*s4*s3*s2*s3 >; 
 

to this polytope