include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,12,4}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240141)
Rank : 5
Schlafli Type : {10,2,12,4}
Number of vertices, edges, etc : 10, 10, 12, 24, 4
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,12,4}*960b, {10,2,6,4}*960c
4-fold quotients : {5,2,6,4}*480c, {10,2,3,4}*480
5-fold quotients : {2,2,12,4}*384b
8-fold quotients : {5,2,3,4}*240
10-fold quotients : {2,2,6,4}*192c
20-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13)(14,15)(16,26)(18,22)(19,21)(20,34)(23,39)(24,42)(25,27)(28,44)
(29,30)(31,47)(32,50)(33,40)(35,38)(36,54)(37,51)(41,53)(45,56)(46,48)(49,58)
(52,55);;
s3 := (11,18)(12,14)(13,29)(15,19)(16,53)(17,21)(20,44)(22,30)(23,58)(24,52)
(25,36)(26,35)(27,39)(28,33)(31,54)(32,43)(34,48)(37,57)(38,49)(40,47)(41,46)
(42,51)(45,55)(50,56);;
s4 := (11,43)(12,52)(13,55)(14,44)(15,28)(16,26)(17,57)(18,53)(19,36)(20,39)
(21,54)(22,41)(23,34)(24,27)(25,42)(29,58)(30,49)(31,47)(32,35)(33,51)(37,40)
(38,50)(45,48)(46,56);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(58)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(58)!(12,13)(14,15)(16,26)(18,22)(19,21)(20,34)(23,39)(24,42)(25,27)
(28,44)(29,30)(31,47)(32,50)(33,40)(35,38)(36,54)(37,51)(41,53)(45,56)(46,48)
(49,58)(52,55);
s3 := Sym(58)!(11,18)(12,14)(13,29)(15,19)(16,53)(17,21)(20,44)(22,30)(23,58)
(24,52)(25,36)(26,35)(27,39)(28,33)(31,54)(32,43)(34,48)(37,57)(38,49)(40,47)
(41,46)(42,51)(45,55)(50,56);
s4 := Sym(58)!(11,43)(12,52)(13,55)(14,44)(15,28)(16,26)(17,57)(18,53)(19,36)
(20,39)(21,54)(22,41)(23,34)(24,27)(25,42)(29,58)(30,49)(31,47)(32,35)(33,51)
(37,40)(38,50)(45,48)(46,56);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope