Polytope of Type {2,5,2,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,2,12,4}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240141)
Rank : 6
Schlafli Type : {2,5,2,12,4}
Number of vertices, edges, etc : 2, 5, 5, 12, 24, 4
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,5,2,6,4}*960c
   4-fold quotients : {2,5,2,3,4}*480
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7);;
s2 := (3,4)(5,6);;
s3 := ( 9,10)(11,12)(13,23)(15,19)(16,18)(17,31)(20,36)(21,39)(22,24)(25,41)
(26,27)(28,44)(29,47)(30,37)(32,35)(33,51)(34,48)(38,50)(42,53)(43,45)(46,55)
(49,52);;
s4 := ( 8,15)( 9,11)(10,26)(12,16)(13,50)(14,18)(17,41)(19,27)(20,55)(21,49)
(22,33)(23,32)(24,36)(25,30)(28,51)(29,40)(31,45)(34,54)(35,46)(37,44)(38,43)
(39,48)(42,52)(47,53);;
s5 := ( 8,54)( 9,52)(10,49)(11,55)(12,46)(13,44)(14,40)(15,51)(16,38)(17,31)
(18,50)(19,33)(20,36)(21,45)(22,53)(23,28)(24,42)(25,27)(26,41)(29,37)(30,47)
(32,34)(35,48)(39,43);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5*s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s5*s4*s3*s4*s3*s4*s5*s4*s3*s4, 
s4*s3*s4*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(55)!(1,2);
s1 := Sym(55)!(4,5)(6,7);
s2 := Sym(55)!(3,4)(5,6);
s3 := Sym(55)!( 9,10)(11,12)(13,23)(15,19)(16,18)(17,31)(20,36)(21,39)(22,24)
(25,41)(26,27)(28,44)(29,47)(30,37)(32,35)(33,51)(34,48)(38,50)(42,53)(43,45)
(46,55)(49,52);
s4 := Sym(55)!( 8,15)( 9,11)(10,26)(12,16)(13,50)(14,18)(17,41)(19,27)(20,55)
(21,49)(22,33)(23,32)(24,36)(25,30)(28,51)(29,40)(31,45)(34,54)(35,46)(37,44)
(38,43)(39,48)(42,52)(47,53);
s5 := Sym(55)!( 8,54)( 9,52)(10,49)(11,55)(12,46)(13,44)(14,40)(15,51)(16,38)
(17,31)(18,50)(19,33)(20,36)(21,45)(22,53)(23,28)(24,42)(25,27)(26,41)(29,37)
(30,47)(32,34)(35,48)(39,43);
poly := sub<Sym(55)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s5*s4*s3*s4*s3*s4*s5*s4*s3*s4, 
s4*s3*s4*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4*s3 >; 
 

to this polytope