include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,2,20}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240142)
Rank : 5
Schlafli Type : {4,6,2,20}
Number of vertices, edges, etc : 4, 12, 6, 20, 20
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,3,2,20}*960, {4,6,2,10}*960b
4-fold quotients : {4,3,2,10}*480, {4,6,2,5}*480b
5-fold quotients : {4,6,2,4}*384b
8-fold quotients : {4,3,2,5}*240
10-fold quotients : {4,3,2,4}*192, {4,6,2,2}*192b
20-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (4,6);;
s1 := (3,4)(5,6);;
s2 := (1,3)(2,5)(4,6);;
s3 := ( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26);;
s4 := ( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,25)(18,22)(20,23)(24,26);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(26)!(4,6);
s1 := Sym(26)!(3,4)(5,6);
s2 := Sym(26)!(1,3)(2,5)(4,6);
s3 := Sym(26)!( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26);
s4 := Sym(26)!( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,25)(18,22)(20,23)
(24,26);
poly := sub<Sym(26)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s0*s1*s2*s0*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope