include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,60,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,60,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240142)
Rank : 4
Schlafli Type : {6,60,2}
Number of vertices, edges, etc : 8, 240, 80, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,30,2}*960
4-fold quotients : {6,15,2}*480
5-fold quotients : {6,12,2}*384a
10-fold quotients : {6,6,2}*192
12-fold quotients : {2,20,2}*160
20-fold quotients : {3,6,2}*96, {6,3,2}*96
24-fold quotients : {2,10,2}*80
40-fold quotients : {3,3,2}*48
48-fold quotients : {2,5,2}*40
60-fold quotients : {2,4,2}*32
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 21, 41)( 22, 43)( 23, 42)
( 24, 44)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 49)( 30, 51)( 31, 50)
( 32, 52)( 33, 53)( 34, 55)( 35, 54)( 36, 56)( 37, 57)( 38, 59)( 39, 58)
( 40, 60)( 62, 63)( 66, 67)( 70, 71)( 74, 75)( 78, 79)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,105)( 86,107)( 87,106)( 88,108)( 89,109)( 90,111)
( 91,110)( 92,112)( 93,113)( 94,115)( 95,114)( 96,116)( 97,117)( 98,119)
( 99,118)(100,120)(122,123)(126,127)(130,131)(134,135)(138,139)(141,161)
(142,163)(143,162)(144,164)(145,165)(146,167)(147,166)(148,168)(149,169)
(150,171)(151,170)(152,172)(153,173)(154,175)(155,174)(156,176)(157,177)
(158,179)(159,178)(160,180)(182,183)(186,187)(190,191)(194,195)(198,199)
(201,221)(202,223)(203,222)(204,224)(205,225)(206,227)(207,226)(208,228)
(209,229)(210,231)(211,230)(212,232)(213,233)(214,235)(215,234)(216,236)
(217,237)(218,239)(219,238)(220,240);;
s1 := ( 1, 21)( 2, 22)( 3, 24)( 4, 23)( 5, 37)( 6, 38)( 7, 40)( 8, 39)
( 9, 33)( 10, 34)( 11, 36)( 12, 35)( 13, 29)( 14, 30)( 15, 32)( 16, 31)
( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 43, 44)( 45, 57)( 46, 58)( 47, 60)
( 48, 59)( 49, 53)( 50, 54)( 51, 56)( 52, 55)( 61, 81)( 62, 82)( 63, 84)
( 64, 83)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69, 93)( 70, 94)( 71, 96)
( 72, 95)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 85)( 78, 86)( 79, 88)
( 80, 87)(103,104)(105,117)(106,118)(107,120)(108,119)(109,113)(110,114)
(111,116)(112,115)(121,201)(122,202)(123,204)(124,203)(125,217)(126,218)
(127,220)(128,219)(129,213)(130,214)(131,216)(132,215)(133,209)(134,210)
(135,212)(136,211)(137,205)(138,206)(139,208)(140,207)(141,181)(142,182)
(143,184)(144,183)(145,197)(146,198)(147,200)(148,199)(149,193)(150,194)
(151,196)(152,195)(153,189)(154,190)(155,192)(156,191)(157,185)(158,186)
(159,188)(160,187)(161,221)(162,222)(163,224)(164,223)(165,237)(166,238)
(167,240)(168,239)(169,233)(170,234)(171,236)(172,235)(173,229)(174,230)
(175,232)(176,231)(177,225)(178,226)(179,228)(180,227);;
s2 := ( 1,128)( 2,126)( 3,127)( 4,125)( 5,124)( 6,122)( 7,123)( 8,121)
( 9,140)( 10,138)( 11,139)( 12,137)( 13,136)( 14,134)( 15,135)( 16,133)
( 17,132)( 18,130)( 19,131)( 20,129)( 21,168)( 22,166)( 23,167)( 24,165)
( 25,164)( 26,162)( 27,163)( 28,161)( 29,180)( 30,178)( 31,179)( 32,177)
( 33,176)( 34,174)( 35,175)( 36,173)( 37,172)( 38,170)( 39,171)( 40,169)
( 41,148)( 42,146)( 43,147)( 44,145)( 45,144)( 46,142)( 47,143)( 48,141)
( 49,160)( 50,158)( 51,159)( 52,157)( 53,156)( 54,154)( 55,155)( 56,153)
( 57,152)( 58,150)( 59,151)( 60,149)( 61,188)( 62,186)( 63,187)( 64,185)
( 65,184)( 66,182)( 67,183)( 68,181)( 69,200)( 70,198)( 71,199)( 72,197)
( 73,196)( 74,194)( 75,195)( 76,193)( 77,192)( 78,190)( 79,191)( 80,189)
( 81,228)( 82,226)( 83,227)( 84,225)( 85,224)( 86,222)( 87,223)( 88,221)
( 89,240)( 90,238)( 91,239)( 92,237)( 93,236)( 94,234)( 95,235)( 96,233)
( 97,232)( 98,230)( 99,231)(100,229)(101,208)(102,206)(103,207)(104,205)
(105,204)(106,202)(107,203)(108,201)(109,220)(110,218)(111,219)(112,217)
(113,216)(114,214)(115,215)(116,213)(117,212)(118,210)(119,211)(120,209);;
s3 := (241,242);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(242)!( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 21, 41)( 22, 43)
( 23, 42)( 24, 44)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 49)( 30, 51)
( 31, 50)( 32, 52)( 33, 53)( 34, 55)( 35, 54)( 36, 56)( 37, 57)( 38, 59)
( 39, 58)( 40, 60)( 62, 63)( 66, 67)( 70, 71)( 74, 75)( 78, 79)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,105)( 86,107)( 87,106)( 88,108)( 89,109)
( 90,111)( 91,110)( 92,112)( 93,113)( 94,115)( 95,114)( 96,116)( 97,117)
( 98,119)( 99,118)(100,120)(122,123)(126,127)(130,131)(134,135)(138,139)
(141,161)(142,163)(143,162)(144,164)(145,165)(146,167)(147,166)(148,168)
(149,169)(150,171)(151,170)(152,172)(153,173)(154,175)(155,174)(156,176)
(157,177)(158,179)(159,178)(160,180)(182,183)(186,187)(190,191)(194,195)
(198,199)(201,221)(202,223)(203,222)(204,224)(205,225)(206,227)(207,226)
(208,228)(209,229)(210,231)(211,230)(212,232)(213,233)(214,235)(215,234)
(216,236)(217,237)(218,239)(219,238)(220,240);
s1 := Sym(242)!( 1, 21)( 2, 22)( 3, 24)( 4, 23)( 5, 37)( 6, 38)( 7, 40)
( 8, 39)( 9, 33)( 10, 34)( 11, 36)( 12, 35)( 13, 29)( 14, 30)( 15, 32)
( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 43, 44)( 45, 57)( 46, 58)
( 47, 60)( 48, 59)( 49, 53)( 50, 54)( 51, 56)( 52, 55)( 61, 81)( 62, 82)
( 63, 84)( 64, 83)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69, 93)( 70, 94)
( 71, 96)( 72, 95)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 85)( 78, 86)
( 79, 88)( 80, 87)(103,104)(105,117)(106,118)(107,120)(108,119)(109,113)
(110,114)(111,116)(112,115)(121,201)(122,202)(123,204)(124,203)(125,217)
(126,218)(127,220)(128,219)(129,213)(130,214)(131,216)(132,215)(133,209)
(134,210)(135,212)(136,211)(137,205)(138,206)(139,208)(140,207)(141,181)
(142,182)(143,184)(144,183)(145,197)(146,198)(147,200)(148,199)(149,193)
(150,194)(151,196)(152,195)(153,189)(154,190)(155,192)(156,191)(157,185)
(158,186)(159,188)(160,187)(161,221)(162,222)(163,224)(164,223)(165,237)
(166,238)(167,240)(168,239)(169,233)(170,234)(171,236)(172,235)(173,229)
(174,230)(175,232)(176,231)(177,225)(178,226)(179,228)(180,227);
s2 := Sym(242)!( 1,128)( 2,126)( 3,127)( 4,125)( 5,124)( 6,122)( 7,123)
( 8,121)( 9,140)( 10,138)( 11,139)( 12,137)( 13,136)( 14,134)( 15,135)
( 16,133)( 17,132)( 18,130)( 19,131)( 20,129)( 21,168)( 22,166)( 23,167)
( 24,165)( 25,164)( 26,162)( 27,163)( 28,161)( 29,180)( 30,178)( 31,179)
( 32,177)( 33,176)( 34,174)( 35,175)( 36,173)( 37,172)( 38,170)( 39,171)
( 40,169)( 41,148)( 42,146)( 43,147)( 44,145)( 45,144)( 46,142)( 47,143)
( 48,141)( 49,160)( 50,158)( 51,159)( 52,157)( 53,156)( 54,154)( 55,155)
( 56,153)( 57,152)( 58,150)( 59,151)( 60,149)( 61,188)( 62,186)( 63,187)
( 64,185)( 65,184)( 66,182)( 67,183)( 68,181)( 69,200)( 70,198)( 71,199)
( 72,197)( 73,196)( 74,194)( 75,195)( 76,193)( 77,192)( 78,190)( 79,191)
( 80,189)( 81,228)( 82,226)( 83,227)( 84,225)( 85,224)( 86,222)( 87,223)
( 88,221)( 89,240)( 90,238)( 91,239)( 92,237)( 93,236)( 94,234)( 95,235)
( 96,233)( 97,232)( 98,230)( 99,231)(100,229)(101,208)(102,206)(103,207)
(104,205)(105,204)(106,202)(107,203)(108,201)(109,220)(110,218)(111,219)
(112,217)(113,216)(114,214)(115,215)(116,213)(117,212)(118,210)(119,211)
(120,209);
s3 := Sym(242)!(241,242);
poly := sub<Sym(242)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2 >;
to this polytope