include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,10,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,10,4}*1920
Also Known As : {{3,6}4,{6,10|2},{10,4|2}}. if this polytope has another name.
Group : SmallGroup(1920,240151)
Rank : 5
Schlafli Type : {3,6,10,4}
Number of vertices, edges, etc : 4, 12, 40, 20, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,10,2}*960
5-fold quotients : {3,6,2,4}*384
10-fold quotients : {3,3,2,4}*192, {3,6,2,2}*192
20-fold quotients : {3,3,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 21, 41)( 22, 42)( 23, 44)
( 24, 43)( 25, 45)( 26, 46)( 27, 48)( 28, 47)( 29, 49)( 30, 50)( 31, 52)
( 32, 51)( 33, 53)( 34, 54)( 35, 56)( 36, 55)( 37, 57)( 38, 58)( 39, 60)
( 40, 59)( 63, 64)( 67, 68)( 71, 72)( 75, 76)( 79, 80)( 81,101)( 82,102)
( 83,104)( 84,103)( 85,105)( 86,106)( 87,108)( 88,107)( 89,109)( 90,110)
( 91,112)( 92,111)( 93,113)( 94,114)( 95,116)( 96,115)( 97,117)( 98,118)
( 99,120)(100,119)(123,124)(127,128)(131,132)(135,136)(139,140)(141,161)
(142,162)(143,164)(144,163)(145,165)(146,166)(147,168)(148,167)(149,169)
(150,170)(151,172)(152,171)(153,173)(154,174)(155,176)(156,175)(157,177)
(158,178)(159,180)(160,179)(183,184)(187,188)(191,192)(195,196)(199,200)
(201,221)(202,222)(203,224)(204,223)(205,225)(206,226)(207,228)(208,227)
(209,229)(210,230)(211,232)(212,231)(213,233)(214,234)(215,236)(216,235)
(217,237)(218,238)(219,240)(220,239);;
s1 := ( 1, 21)( 2, 24)( 3, 23)( 4, 22)( 5, 25)( 6, 28)( 7, 27)( 8, 26)
( 9, 29)( 10, 32)( 11, 31)( 12, 30)( 13, 33)( 14, 36)( 15, 35)( 16, 34)
( 17, 37)( 18, 40)( 19, 39)( 20, 38)( 42, 44)( 46, 48)( 50, 52)( 54, 56)
( 58, 60)( 61, 81)( 62, 84)( 63, 83)( 64, 82)( 65, 85)( 66, 88)( 67, 87)
( 68, 86)( 69, 89)( 70, 92)( 71, 91)( 72, 90)( 73, 93)( 74, 96)( 75, 95)
( 76, 94)( 77, 97)( 78,100)( 79, 99)( 80, 98)(102,104)(106,108)(110,112)
(114,116)(118,120)(121,141)(122,144)(123,143)(124,142)(125,145)(126,148)
(127,147)(128,146)(129,149)(130,152)(131,151)(132,150)(133,153)(134,156)
(135,155)(136,154)(137,157)(138,160)(139,159)(140,158)(162,164)(166,168)
(170,172)(174,176)(178,180)(181,201)(182,204)(183,203)(184,202)(185,205)
(186,208)(187,207)(188,206)(189,209)(190,212)(191,211)(192,210)(193,213)
(194,216)(195,215)(196,214)(197,217)(198,220)(199,219)(200,218)(222,224)
(226,228)(230,232)(234,236)(238,240);;
s2 := ( 1, 2)( 5, 18)( 6, 17)( 7, 19)( 8, 20)( 9, 14)( 10, 13)( 11, 15)
( 12, 16)( 21, 42)( 22, 41)( 23, 43)( 24, 44)( 25, 58)( 26, 57)( 27, 59)
( 28, 60)( 29, 54)( 30, 53)( 31, 55)( 32, 56)( 33, 50)( 34, 49)( 35, 51)
( 36, 52)( 37, 46)( 38, 45)( 39, 47)( 40, 48)( 61, 62)( 65, 78)( 66, 77)
( 67, 79)( 68, 80)( 69, 74)( 70, 73)( 71, 75)( 72, 76)( 81,102)( 82,101)
( 83,103)( 84,104)( 85,118)( 86,117)( 87,119)( 88,120)( 89,114)( 90,113)
( 91,115)( 92,116)( 93,110)( 94,109)( 95,111)( 96,112)( 97,106)( 98,105)
( 99,107)(100,108)(121,122)(125,138)(126,137)(127,139)(128,140)(129,134)
(130,133)(131,135)(132,136)(141,162)(142,161)(143,163)(144,164)(145,178)
(146,177)(147,179)(148,180)(149,174)(150,173)(151,175)(152,176)(153,170)
(154,169)(155,171)(156,172)(157,166)(158,165)(159,167)(160,168)(181,182)
(185,198)(186,197)(187,199)(188,200)(189,194)(190,193)(191,195)(192,196)
(201,222)(202,221)(203,223)(204,224)(205,238)(206,237)(207,239)(208,240)
(209,234)(210,233)(211,235)(212,236)(213,230)(214,229)(215,231)(216,232)
(217,226)(218,225)(219,227)(220,228);;
s3 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9, 17)( 10, 18)( 11, 19)( 12, 20)
( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 29, 37)( 30, 38)( 31, 39)( 32, 40)
( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 57)( 50, 58)( 51, 59)( 52, 60)
( 61, 65)( 62, 66)( 63, 67)( 64, 68)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 97)( 90, 98)( 91, 99)( 92,100)
(101,105)(102,106)(103,107)(104,108)(109,117)(110,118)(111,119)(112,120)
(121,185)(122,186)(123,187)(124,188)(125,181)(126,182)(127,183)(128,184)
(129,197)(130,198)(131,199)(132,200)(133,193)(134,194)(135,195)(136,196)
(137,189)(138,190)(139,191)(140,192)(141,205)(142,206)(143,207)(144,208)
(145,201)(146,202)(147,203)(148,204)(149,217)(150,218)(151,219)(152,220)
(153,213)(154,214)(155,215)(156,216)(157,209)(158,210)(159,211)(160,212)
(161,225)(162,226)(163,227)(164,228)(165,221)(166,222)(167,223)(168,224)
(169,237)(170,238)(171,239)(172,240)(173,233)(174,234)(175,235)(176,236)
(177,229)(178,230)(179,231)(180,232);;
s4 := ( 1,121)( 2,122)( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)( 8,128)
( 9,129)( 10,130)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)( 16,136)
( 17,137)( 18,138)( 19,139)( 20,140)( 21,141)( 22,142)( 23,143)( 24,144)
( 25,145)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,151)( 32,152)
( 33,153)( 34,154)( 35,155)( 36,156)( 37,157)( 38,158)( 39,159)( 40,160)
( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)( 48,168)
( 49,169)( 50,170)( 51,171)( 52,172)( 53,173)( 54,174)( 55,175)( 56,176)
( 57,177)( 58,178)( 59,179)( 60,180)( 61,181)( 62,182)( 63,183)( 64,184)
( 65,185)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,191)( 72,192)
( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)
( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,206)( 87,207)( 88,208)
( 89,209)( 90,210)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)( 96,216)
( 97,217)( 98,218)( 99,219)(100,220)(101,221)(102,222)(103,223)(104,224)
(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)(112,232)
(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)(120,240);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(240)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 21, 41)( 22, 42)
( 23, 44)( 24, 43)( 25, 45)( 26, 46)( 27, 48)( 28, 47)( 29, 49)( 30, 50)
( 31, 52)( 32, 51)( 33, 53)( 34, 54)( 35, 56)( 36, 55)( 37, 57)( 38, 58)
( 39, 60)( 40, 59)( 63, 64)( 67, 68)( 71, 72)( 75, 76)( 79, 80)( 81,101)
( 82,102)( 83,104)( 84,103)( 85,105)( 86,106)( 87,108)( 88,107)( 89,109)
( 90,110)( 91,112)( 92,111)( 93,113)( 94,114)( 95,116)( 96,115)( 97,117)
( 98,118)( 99,120)(100,119)(123,124)(127,128)(131,132)(135,136)(139,140)
(141,161)(142,162)(143,164)(144,163)(145,165)(146,166)(147,168)(148,167)
(149,169)(150,170)(151,172)(152,171)(153,173)(154,174)(155,176)(156,175)
(157,177)(158,178)(159,180)(160,179)(183,184)(187,188)(191,192)(195,196)
(199,200)(201,221)(202,222)(203,224)(204,223)(205,225)(206,226)(207,228)
(208,227)(209,229)(210,230)(211,232)(212,231)(213,233)(214,234)(215,236)
(216,235)(217,237)(218,238)(219,240)(220,239);
s1 := Sym(240)!( 1, 21)( 2, 24)( 3, 23)( 4, 22)( 5, 25)( 6, 28)( 7, 27)
( 8, 26)( 9, 29)( 10, 32)( 11, 31)( 12, 30)( 13, 33)( 14, 36)( 15, 35)
( 16, 34)( 17, 37)( 18, 40)( 19, 39)( 20, 38)( 42, 44)( 46, 48)( 50, 52)
( 54, 56)( 58, 60)( 61, 81)( 62, 84)( 63, 83)( 64, 82)( 65, 85)( 66, 88)
( 67, 87)( 68, 86)( 69, 89)( 70, 92)( 71, 91)( 72, 90)( 73, 93)( 74, 96)
( 75, 95)( 76, 94)( 77, 97)( 78,100)( 79, 99)( 80, 98)(102,104)(106,108)
(110,112)(114,116)(118,120)(121,141)(122,144)(123,143)(124,142)(125,145)
(126,148)(127,147)(128,146)(129,149)(130,152)(131,151)(132,150)(133,153)
(134,156)(135,155)(136,154)(137,157)(138,160)(139,159)(140,158)(162,164)
(166,168)(170,172)(174,176)(178,180)(181,201)(182,204)(183,203)(184,202)
(185,205)(186,208)(187,207)(188,206)(189,209)(190,212)(191,211)(192,210)
(193,213)(194,216)(195,215)(196,214)(197,217)(198,220)(199,219)(200,218)
(222,224)(226,228)(230,232)(234,236)(238,240);
s2 := Sym(240)!( 1, 2)( 5, 18)( 6, 17)( 7, 19)( 8, 20)( 9, 14)( 10, 13)
( 11, 15)( 12, 16)( 21, 42)( 22, 41)( 23, 43)( 24, 44)( 25, 58)( 26, 57)
( 27, 59)( 28, 60)( 29, 54)( 30, 53)( 31, 55)( 32, 56)( 33, 50)( 34, 49)
( 35, 51)( 36, 52)( 37, 46)( 38, 45)( 39, 47)( 40, 48)( 61, 62)( 65, 78)
( 66, 77)( 67, 79)( 68, 80)( 69, 74)( 70, 73)( 71, 75)( 72, 76)( 81,102)
( 82,101)( 83,103)( 84,104)( 85,118)( 86,117)( 87,119)( 88,120)( 89,114)
( 90,113)( 91,115)( 92,116)( 93,110)( 94,109)( 95,111)( 96,112)( 97,106)
( 98,105)( 99,107)(100,108)(121,122)(125,138)(126,137)(127,139)(128,140)
(129,134)(130,133)(131,135)(132,136)(141,162)(142,161)(143,163)(144,164)
(145,178)(146,177)(147,179)(148,180)(149,174)(150,173)(151,175)(152,176)
(153,170)(154,169)(155,171)(156,172)(157,166)(158,165)(159,167)(160,168)
(181,182)(185,198)(186,197)(187,199)(188,200)(189,194)(190,193)(191,195)
(192,196)(201,222)(202,221)(203,223)(204,224)(205,238)(206,237)(207,239)
(208,240)(209,234)(210,233)(211,235)(212,236)(213,230)(214,229)(215,231)
(216,232)(217,226)(218,225)(219,227)(220,228);
s3 := Sym(240)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9, 17)( 10, 18)( 11, 19)
( 12, 20)( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 29, 37)( 30, 38)( 31, 39)
( 32, 40)( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 57)( 50, 58)( 51, 59)
( 52, 60)( 61, 65)( 62, 66)( 63, 67)( 64, 68)( 69, 77)( 70, 78)( 71, 79)
( 72, 80)( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 97)( 90, 98)( 91, 99)
( 92,100)(101,105)(102,106)(103,107)(104,108)(109,117)(110,118)(111,119)
(112,120)(121,185)(122,186)(123,187)(124,188)(125,181)(126,182)(127,183)
(128,184)(129,197)(130,198)(131,199)(132,200)(133,193)(134,194)(135,195)
(136,196)(137,189)(138,190)(139,191)(140,192)(141,205)(142,206)(143,207)
(144,208)(145,201)(146,202)(147,203)(148,204)(149,217)(150,218)(151,219)
(152,220)(153,213)(154,214)(155,215)(156,216)(157,209)(158,210)(159,211)
(160,212)(161,225)(162,226)(163,227)(164,228)(165,221)(166,222)(167,223)
(168,224)(169,237)(170,238)(171,239)(172,240)(173,233)(174,234)(175,235)
(176,236)(177,229)(178,230)(179,231)(180,232);
s4 := Sym(240)!( 1,121)( 2,122)( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)
( 8,128)( 9,129)( 10,130)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)
( 16,136)( 17,137)( 18,138)( 19,139)( 20,140)( 21,141)( 22,142)( 23,143)
( 24,144)( 25,145)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,151)
( 32,152)( 33,153)( 34,154)( 35,155)( 36,156)( 37,157)( 38,158)( 39,159)
( 40,160)( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)
( 48,168)( 49,169)( 50,170)( 51,171)( 52,172)( 53,173)( 54,174)( 55,175)
( 56,176)( 57,177)( 58,178)( 59,179)( 60,180)( 61,181)( 62,182)( 63,183)
( 64,184)( 65,185)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,191)
( 72,192)( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)
( 80,200)( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,206)( 87,207)
( 88,208)( 89,209)( 90,210)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)
( 96,216)( 97,217)( 98,218)( 99,219)(100,220)(101,221)(102,222)(103,223)
(104,224)(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)
(112,232)(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)
(120,240);
poly := sub<Sym(240)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope