Polytope of Type {4,2,6,20}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,6,20}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240151)
Rank : 5
Schlafli Type : {4,2,6,20}
Number of vertices, edges, etc : 4, 4, 6, 60, 20
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,20}*960b
   5-fold quotients : {4,2,6,4}*384b
   10-fold quotients : {4,2,3,4}*192, {2,2,6,4}*192b
   20-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)(11,12)(15,16)(19,20)(23,24);;
s3 := ( 6, 7)( 9,21)(10,23)(11,22)(12,24)(13,17)(14,19)(15,18)(16,20);;
s4 := ( 5,10)( 6, 9)( 7,12)( 8,11)(13,22)(14,21)(15,24)(16,23)(17,18)(19,20);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s2*s3*s4*s3*s4*s3*s2*s4*s3*s4*s3*s4*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(24)!(2,3);
s1 := Sym(24)!(1,2)(3,4);
s2 := Sym(24)!( 7, 8)(11,12)(15,16)(19,20)(23,24);
s3 := Sym(24)!( 6, 7)( 9,21)(10,23)(11,22)(12,24)(13,17)(14,19)(15,18)(16,20);
s4 := Sym(24)!( 5,10)( 6, 9)( 7,12)( 8,11)(13,22)(14,21)(15,24)(16,23)(17,18)
(19,20);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s2*s3*s4*s3*s4*s3*s2*s4*s3*s4*s3*s4*s3 >; 
 

to this polytope