include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,5,2,12,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,2,12,3}*1920
if this polytope has a name.
Group : SmallGroup(1920,240195)
Rank : 6
Schlafli Type : {2,5,2,12,3}
Number of vertices, edges, etc : 2, 5, 5, 16, 24, 4
Order of s0s1s2s3s4s5 : 40
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,5,2,6,3}*960
4-fold quotients : {2,5,2,3,3}*480
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7);;
s2 := (3,4)(5,6);;
s3 := ( 9,10)(11,12)(13,26)(14,29)(16,21)(17,20)(18,38)(19,41)(22,44)(23,45)
(24,30)(25,27)(28,49)(31,48)(32,33)(34,50)(35,52)(36,39)(37,42)(40,54)(43,55)
(46,47);;
s4 := ( 8,16)( 9,11)(10,32)(12,17)(13,55)(14,54)(15,20)(18,49)(19,48)(21,33)
(22,53)(23,51)(24,43)(25,40)(26,39)(27,41)(28,37)(29,42)(30,38)(31,36)(34,47)
(35,46)(44,50)(45,52);;
s5 := ( 8,53)( 9,47)(10,46)(11,43)(12,55)(13,18)(14,19)(15,51)(16,31)(17,49)
(20,28)(21,48)(22,36)(23,37)(24,34)(25,35)(26,38)(27,52)(29,41)(30,50)(32,40)
(33,54)(39,44)(42,45);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s5*s3*s4*s3*s4*s3*s4*s5*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(55)!(1,2);
s1 := Sym(55)!(4,5)(6,7);
s2 := Sym(55)!(3,4)(5,6);
s3 := Sym(55)!( 9,10)(11,12)(13,26)(14,29)(16,21)(17,20)(18,38)(19,41)(22,44)
(23,45)(24,30)(25,27)(28,49)(31,48)(32,33)(34,50)(35,52)(36,39)(37,42)(40,54)
(43,55)(46,47);
s4 := Sym(55)!( 8,16)( 9,11)(10,32)(12,17)(13,55)(14,54)(15,20)(18,49)(19,48)
(21,33)(22,53)(23,51)(24,43)(25,40)(26,39)(27,41)(28,37)(29,42)(30,38)(31,36)
(34,47)(35,46)(44,50)(45,52);
s5 := Sym(55)!( 8,53)( 9,47)(10,46)(11,43)(12,55)(13,18)(14,19)(15,51)(16,31)
(17,49)(20,28)(21,48)(22,36)(23,37)(24,34)(25,35)(26,38)(27,52)(29,41)(30,50)
(32,40)(33,54)(39,44)(42,45);
poly := sub<Sym(55)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s5*s3*s4*s3*s4*s3*s4*s5*s3*s4*s3*s4*s3*s4 >;
to this polytope