include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,240213)
Rank : 4
Schlafli Type : {6,6,10}
Number of vertices, edges, etc : 16, 48, 80, 10
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,10}*960
4-fold quotients : {3,6,10}*480
5-fold quotients : {6,6,2}*384b
10-fold quotients : {6,6,2}*192
20-fold quotients : {3,6,2}*96, {6,3,2}*96
24-fold quotients : {2,2,10}*80
40-fold quotients : {3,3,2}*48
48-fold quotients : {2,2,5}*40
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)( 21, 23)
( 22, 24)( 27, 28)( 29, 31)( 30, 32)( 35, 36)( 37, 39)( 38, 40)( 41, 81)
( 42, 82)( 43, 84)( 44, 83)( 45, 87)( 46, 88)( 47, 85)( 48, 86)( 49, 89)
( 50, 90)( 51, 92)( 52, 91)( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 97)
( 58, 98)( 59,100)( 60, 99)( 61,103)( 62,104)( 63,101)( 64,102)( 65,105)
( 66,106)( 67,108)( 68,107)( 69,111)( 70,112)( 71,109)( 72,110)( 73,113)
( 74,114)( 75,116)( 76,115)( 77,119)( 78,120)( 79,117)( 80,118)(121,122)
(125,128)(126,127)(129,130)(133,136)(134,135)(137,138)(141,144)(142,143)
(145,146)(149,152)(150,151)(153,154)(157,160)(158,159)(161,202)(162,201)
(163,203)(164,204)(165,208)(166,207)(167,206)(168,205)(169,210)(170,209)
(171,211)(172,212)(173,216)(174,215)(175,214)(176,213)(177,218)(178,217)
(179,219)(180,220)(181,224)(182,223)(183,222)(184,221)(185,226)(186,225)
(187,227)(188,228)(189,232)(190,231)(191,230)(192,229)(193,234)(194,233)
(195,235)(196,236)(197,240)(198,239)(199,238)(200,237);;
s1 := ( 1, 41)( 2, 42)( 3, 47)( 4, 48)( 5, 46)( 6, 45)( 7, 43)( 8, 44)
( 9, 49)( 10, 50)( 11, 55)( 12, 56)( 13, 54)( 14, 53)( 15, 51)( 16, 52)
( 17, 57)( 18, 58)( 19, 63)( 20, 64)( 21, 62)( 22, 61)( 23, 59)( 24, 60)
( 25, 65)( 26, 66)( 27, 71)( 28, 72)( 29, 70)( 30, 69)( 31, 67)( 32, 68)
( 33, 73)( 34, 74)( 35, 79)( 36, 80)( 37, 78)( 38, 77)( 39, 75)( 40, 76)
( 83, 87)( 84, 88)( 85, 86)( 91, 95)( 92, 96)( 93, 94)( 99,103)(100,104)
(101,102)(107,111)(108,112)(109,110)(115,119)(116,120)(117,118)(121,161)
(122,162)(123,167)(124,168)(125,166)(126,165)(127,163)(128,164)(129,169)
(130,170)(131,175)(132,176)(133,174)(134,173)(135,171)(136,172)(137,177)
(138,178)(139,183)(140,184)(141,182)(142,181)(143,179)(144,180)(145,185)
(146,186)(147,191)(148,192)(149,190)(150,189)(151,187)(152,188)(153,193)
(154,194)(155,199)(156,200)(157,198)(158,197)(159,195)(160,196)(203,207)
(204,208)(205,206)(211,215)(212,216)(213,214)(219,223)(220,224)(221,222)
(227,231)(228,232)(229,230)(235,239)(236,240)(237,238);;
s2 := ( 1,123)( 2,124)( 3,121)( 4,122)( 5,126)( 6,125)( 7,127)( 8,128)
( 9,155)( 10,156)( 11,153)( 12,154)( 13,158)( 14,157)( 15,159)( 16,160)
( 17,147)( 18,148)( 19,145)( 20,146)( 21,150)( 22,149)( 23,151)( 24,152)
( 25,139)( 26,140)( 27,137)( 28,138)( 29,142)( 30,141)( 31,143)( 32,144)
( 33,131)( 34,132)( 35,129)( 36,130)( 37,134)( 38,133)( 39,135)( 40,136)
( 41,203)( 42,204)( 43,201)( 44,202)( 45,206)( 46,205)( 47,207)( 48,208)
( 49,235)( 50,236)( 51,233)( 52,234)( 53,238)( 54,237)( 55,239)( 56,240)
( 57,227)( 58,228)( 59,225)( 60,226)( 61,230)( 62,229)( 63,231)( 64,232)
( 65,219)( 66,220)( 67,217)( 68,218)( 69,222)( 70,221)( 71,223)( 72,224)
( 73,211)( 74,212)( 75,209)( 76,210)( 77,214)( 78,213)( 79,215)( 80,216)
( 81,163)( 82,164)( 83,161)( 84,162)( 85,166)( 86,165)( 87,167)( 88,168)
( 89,195)( 90,196)( 91,193)( 92,194)( 93,198)( 94,197)( 95,199)( 96,200)
( 97,187)( 98,188)( 99,185)(100,186)(101,190)(102,189)(103,191)(104,192)
(105,179)(106,180)(107,177)(108,178)(109,182)(110,181)(111,183)(112,184)
(113,171)(114,172)(115,169)(116,170)(117,174)(118,173)(119,175)(120,176);;
s3 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)( 8, 16)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 37)( 22, 38)( 23, 39)( 24, 40)
( 41, 49)( 42, 50)( 43, 51)( 44, 52)( 45, 53)( 46, 54)( 47, 55)( 48, 56)
( 57, 73)( 58, 74)( 59, 75)( 60, 76)( 61, 77)( 62, 78)( 63, 79)( 64, 80)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,113)( 98,114)( 99,115)(100,116)(101,117)(102,118)(103,119)(104,120)
(121,129)(122,130)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)
(137,153)(138,154)(139,155)(140,156)(141,157)(142,158)(143,159)(144,160)
(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)
(177,193)(178,194)(179,195)(180,196)(181,197)(182,198)(183,199)(184,200)
(201,209)(202,210)(203,211)(204,212)(205,213)(206,214)(207,215)(208,216)
(217,233)(218,234)(219,235)(220,236)(221,237)(222,238)(223,239)(224,240);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(240)!( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)
( 21, 23)( 22, 24)( 27, 28)( 29, 31)( 30, 32)( 35, 36)( 37, 39)( 38, 40)
( 41, 81)( 42, 82)( 43, 84)( 44, 83)( 45, 87)( 46, 88)( 47, 85)( 48, 86)
( 49, 89)( 50, 90)( 51, 92)( 52, 91)( 53, 95)( 54, 96)( 55, 93)( 56, 94)
( 57, 97)( 58, 98)( 59,100)( 60, 99)( 61,103)( 62,104)( 63,101)( 64,102)
( 65,105)( 66,106)( 67,108)( 68,107)( 69,111)( 70,112)( 71,109)( 72,110)
( 73,113)( 74,114)( 75,116)( 76,115)( 77,119)( 78,120)( 79,117)( 80,118)
(121,122)(125,128)(126,127)(129,130)(133,136)(134,135)(137,138)(141,144)
(142,143)(145,146)(149,152)(150,151)(153,154)(157,160)(158,159)(161,202)
(162,201)(163,203)(164,204)(165,208)(166,207)(167,206)(168,205)(169,210)
(170,209)(171,211)(172,212)(173,216)(174,215)(175,214)(176,213)(177,218)
(178,217)(179,219)(180,220)(181,224)(182,223)(183,222)(184,221)(185,226)
(186,225)(187,227)(188,228)(189,232)(190,231)(191,230)(192,229)(193,234)
(194,233)(195,235)(196,236)(197,240)(198,239)(199,238)(200,237);
s1 := Sym(240)!( 1, 41)( 2, 42)( 3, 47)( 4, 48)( 5, 46)( 6, 45)( 7, 43)
( 8, 44)( 9, 49)( 10, 50)( 11, 55)( 12, 56)( 13, 54)( 14, 53)( 15, 51)
( 16, 52)( 17, 57)( 18, 58)( 19, 63)( 20, 64)( 21, 62)( 22, 61)( 23, 59)
( 24, 60)( 25, 65)( 26, 66)( 27, 71)( 28, 72)( 29, 70)( 30, 69)( 31, 67)
( 32, 68)( 33, 73)( 34, 74)( 35, 79)( 36, 80)( 37, 78)( 38, 77)( 39, 75)
( 40, 76)( 83, 87)( 84, 88)( 85, 86)( 91, 95)( 92, 96)( 93, 94)( 99,103)
(100,104)(101,102)(107,111)(108,112)(109,110)(115,119)(116,120)(117,118)
(121,161)(122,162)(123,167)(124,168)(125,166)(126,165)(127,163)(128,164)
(129,169)(130,170)(131,175)(132,176)(133,174)(134,173)(135,171)(136,172)
(137,177)(138,178)(139,183)(140,184)(141,182)(142,181)(143,179)(144,180)
(145,185)(146,186)(147,191)(148,192)(149,190)(150,189)(151,187)(152,188)
(153,193)(154,194)(155,199)(156,200)(157,198)(158,197)(159,195)(160,196)
(203,207)(204,208)(205,206)(211,215)(212,216)(213,214)(219,223)(220,224)
(221,222)(227,231)(228,232)(229,230)(235,239)(236,240)(237,238);
s2 := Sym(240)!( 1,123)( 2,124)( 3,121)( 4,122)( 5,126)( 6,125)( 7,127)
( 8,128)( 9,155)( 10,156)( 11,153)( 12,154)( 13,158)( 14,157)( 15,159)
( 16,160)( 17,147)( 18,148)( 19,145)( 20,146)( 21,150)( 22,149)( 23,151)
( 24,152)( 25,139)( 26,140)( 27,137)( 28,138)( 29,142)( 30,141)( 31,143)
( 32,144)( 33,131)( 34,132)( 35,129)( 36,130)( 37,134)( 38,133)( 39,135)
( 40,136)( 41,203)( 42,204)( 43,201)( 44,202)( 45,206)( 46,205)( 47,207)
( 48,208)( 49,235)( 50,236)( 51,233)( 52,234)( 53,238)( 54,237)( 55,239)
( 56,240)( 57,227)( 58,228)( 59,225)( 60,226)( 61,230)( 62,229)( 63,231)
( 64,232)( 65,219)( 66,220)( 67,217)( 68,218)( 69,222)( 70,221)( 71,223)
( 72,224)( 73,211)( 74,212)( 75,209)( 76,210)( 77,214)( 78,213)( 79,215)
( 80,216)( 81,163)( 82,164)( 83,161)( 84,162)( 85,166)( 86,165)( 87,167)
( 88,168)( 89,195)( 90,196)( 91,193)( 92,194)( 93,198)( 94,197)( 95,199)
( 96,200)( 97,187)( 98,188)( 99,185)(100,186)(101,190)(102,189)(103,191)
(104,192)(105,179)(106,180)(107,177)(108,178)(109,182)(110,181)(111,183)
(112,184)(113,171)(114,172)(115,169)(116,170)(117,174)(118,173)(119,175)
(120,176);
s3 := Sym(240)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)
( 8, 16)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 37)( 22, 38)( 23, 39)
( 24, 40)( 41, 49)( 42, 50)( 43, 51)( 44, 52)( 45, 53)( 46, 54)( 47, 55)
( 48, 56)( 57, 73)( 58, 74)( 59, 75)( 60, 76)( 61, 77)( 62, 78)( 63, 79)
( 64, 80)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,113)( 98,114)( 99,115)(100,116)(101,117)(102,118)(103,119)
(104,120)(121,129)(122,130)(123,131)(124,132)(125,133)(126,134)(127,135)
(128,136)(137,153)(138,154)(139,155)(140,156)(141,157)(142,158)(143,159)
(144,160)(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)
(168,176)(177,193)(178,194)(179,195)(180,196)(181,197)(182,198)(183,199)
(184,200)(201,209)(202,210)(203,211)(204,212)(205,213)(206,214)(207,215)
(208,216)(217,233)(218,234)(219,235)(220,236)(221,237)(222,238)(223,239)
(224,240);
poly := sub<Sym(240)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope