include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,6,4}*1920
if this polytope has a name.
Group : SmallGroup(1920,240232)
Rank : 4
Schlafli Type : {30,6,4}
Number of vertices, edges, etc : 40, 120, 16, 4
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {15,6,4}*960, {30,6,2}*960
4-fold quotients : {15,6,2}*480
5-fold quotients : {6,6,4}*384
10-fold quotients : {3,6,4}*192, {6,6,2}*192
12-fold quotients : {10,2,4}*160
20-fold quotients : {3,6,2}*96, {6,3,2}*96
24-fold quotients : {5,2,4}*80, {10,2,2}*80
40-fold quotients : {3,3,2}*48
48-fold quotients : {5,2,2}*40
60-fold quotients : {2,2,4}*32
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 17)( 6, 18)( 7, 20)( 8, 19)( 9, 13)( 10, 14)( 11, 16)
( 12, 15)( 21, 41)( 22, 42)( 23, 44)( 24, 43)( 25, 57)( 26, 58)( 27, 60)
( 28, 59)( 29, 53)( 30, 54)( 31, 56)( 32, 55)( 33, 49)( 34, 50)( 35, 52)
( 36, 51)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 63, 64)( 65, 77)( 66, 78)
( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)( 81,101)( 82,102)
( 83,104)( 84,103)( 85,117)( 86,118)( 87,120)( 88,119)( 89,113)( 90,114)
( 91,116)( 92,115)( 93,109)( 94,110)( 95,112)( 96,111)( 97,105)( 98,106)
( 99,108)(100,107)(123,124)(125,137)(126,138)(127,140)(128,139)(129,133)
(130,134)(131,136)(132,135)(141,161)(142,162)(143,164)(144,163)(145,177)
(146,178)(147,180)(148,179)(149,173)(150,174)(151,176)(152,175)(153,169)
(154,170)(155,172)(156,171)(157,165)(158,166)(159,168)(160,167)(183,184)
(185,197)(186,198)(187,200)(188,199)(189,193)(190,194)(191,196)(192,195)
(201,221)(202,222)(203,224)(204,223)(205,237)(206,238)(207,240)(208,239)
(209,233)(210,234)(211,236)(212,235)(213,229)(214,230)(215,232)(216,231)
(217,225)(218,226)(219,228)(220,227)(243,244)(245,257)(246,258)(247,260)
(248,259)(249,253)(250,254)(251,256)(252,255)(261,281)(262,282)(263,284)
(264,283)(265,297)(266,298)(267,300)(268,299)(269,293)(270,294)(271,296)
(272,295)(273,289)(274,290)(275,292)(276,291)(277,285)(278,286)(279,288)
(280,287)(303,304)(305,317)(306,318)(307,320)(308,319)(309,313)(310,314)
(311,316)(312,315)(321,341)(322,342)(323,344)(324,343)(325,357)(326,358)
(327,360)(328,359)(329,353)(330,354)(331,356)(332,355)(333,349)(334,350)
(335,352)(336,351)(337,345)(338,346)(339,348)(340,347)(363,364)(365,377)
(366,378)(367,380)(368,379)(369,373)(370,374)(371,376)(372,375)(381,401)
(382,402)(383,404)(384,403)(385,417)(386,418)(387,420)(388,419)(389,413)
(390,414)(391,416)(392,415)(393,409)(394,410)(395,412)(396,411)(397,405)
(398,406)(399,408)(400,407)(423,424)(425,437)(426,438)(427,440)(428,439)
(429,433)(430,434)(431,436)(432,435)(441,461)(442,462)(443,464)(444,463)
(445,477)(446,478)(447,480)(448,479)(449,473)(450,474)(451,476)(452,475)
(453,469)(454,470)(455,472)(456,471)(457,465)(458,466)(459,468)(460,467);;
s1 := ( 1,265)( 2,268)( 3,267)( 4,266)( 5,261)( 6,264)( 7,263)( 8,262)
( 9,277)( 10,280)( 11,279)( 12,278)( 13,273)( 14,276)( 15,275)( 16,274)
( 17,269)( 18,272)( 19,271)( 20,270)( 21,245)( 22,248)( 23,247)( 24,246)
( 25,241)( 26,244)( 27,243)( 28,242)( 29,257)( 30,260)( 31,259)( 32,258)
( 33,253)( 34,256)( 35,255)( 36,254)( 37,249)( 38,252)( 39,251)( 40,250)
( 41,285)( 42,288)( 43,287)( 44,286)( 45,281)( 46,284)( 47,283)( 48,282)
( 49,297)( 50,300)( 51,299)( 52,298)( 53,293)( 54,296)( 55,295)( 56,294)
( 57,289)( 58,292)( 59,291)( 60,290)( 61,325)( 62,328)( 63,327)( 64,326)
( 65,321)( 66,324)( 67,323)( 68,322)( 69,337)( 70,340)( 71,339)( 72,338)
( 73,333)( 74,336)( 75,335)( 76,334)( 77,329)( 78,332)( 79,331)( 80,330)
( 81,305)( 82,308)( 83,307)( 84,306)( 85,301)( 86,304)( 87,303)( 88,302)
( 89,317)( 90,320)( 91,319)( 92,318)( 93,313)( 94,316)( 95,315)( 96,314)
( 97,309)( 98,312)( 99,311)(100,310)(101,345)(102,348)(103,347)(104,346)
(105,341)(106,344)(107,343)(108,342)(109,357)(110,360)(111,359)(112,358)
(113,353)(114,356)(115,355)(116,354)(117,349)(118,352)(119,351)(120,350)
(121,385)(122,388)(123,387)(124,386)(125,381)(126,384)(127,383)(128,382)
(129,397)(130,400)(131,399)(132,398)(133,393)(134,396)(135,395)(136,394)
(137,389)(138,392)(139,391)(140,390)(141,365)(142,368)(143,367)(144,366)
(145,361)(146,364)(147,363)(148,362)(149,377)(150,380)(151,379)(152,378)
(153,373)(154,376)(155,375)(156,374)(157,369)(158,372)(159,371)(160,370)
(161,405)(162,408)(163,407)(164,406)(165,401)(166,404)(167,403)(168,402)
(169,417)(170,420)(171,419)(172,418)(173,413)(174,416)(175,415)(176,414)
(177,409)(178,412)(179,411)(180,410)(181,445)(182,448)(183,447)(184,446)
(185,441)(186,444)(187,443)(188,442)(189,457)(190,460)(191,459)(192,458)
(193,453)(194,456)(195,455)(196,454)(197,449)(198,452)(199,451)(200,450)
(201,425)(202,428)(203,427)(204,426)(205,421)(206,424)(207,423)(208,422)
(209,437)(210,440)(211,439)(212,438)(213,433)(214,436)(215,435)(216,434)
(217,429)(218,432)(219,431)(220,430)(221,465)(222,468)(223,467)(224,466)
(225,461)(226,464)(227,463)(228,462)(229,477)(230,480)(231,479)(232,478)
(233,473)(234,476)(235,475)(236,474)(237,469)(238,472)(239,471)(240,470);;
s2 := ( 1, 2)( 5, 6)( 9, 10)( 13, 14)( 17, 18)( 21, 42)( 22, 41)( 23, 43)
( 24, 44)( 25, 46)( 26, 45)( 27, 47)( 28, 48)( 29, 50)( 30, 49)( 31, 51)
( 32, 52)( 33, 54)( 34, 53)( 35, 55)( 36, 56)( 37, 58)( 38, 57)( 39, 59)
( 40, 60)( 61, 62)( 65, 66)( 69, 70)( 73, 74)( 77, 78)( 81,102)( 82,101)
( 83,103)( 84,104)( 85,106)( 86,105)( 87,107)( 88,108)( 89,110)( 90,109)
( 91,111)( 92,112)( 93,114)( 94,113)( 95,115)( 96,116)( 97,118)( 98,117)
( 99,119)(100,120)(121,182)(122,181)(123,183)(124,184)(125,186)(126,185)
(127,187)(128,188)(129,190)(130,189)(131,191)(132,192)(133,194)(134,193)
(135,195)(136,196)(137,198)(138,197)(139,199)(140,200)(141,222)(142,221)
(143,223)(144,224)(145,226)(146,225)(147,227)(148,228)(149,230)(150,229)
(151,231)(152,232)(153,234)(154,233)(155,235)(156,236)(157,238)(158,237)
(159,239)(160,240)(161,202)(162,201)(163,203)(164,204)(165,206)(166,205)
(167,207)(168,208)(169,210)(170,209)(171,211)(172,212)(173,214)(174,213)
(175,215)(176,216)(177,218)(178,217)(179,219)(180,220)(241,242)(245,246)
(249,250)(253,254)(257,258)(261,282)(262,281)(263,283)(264,284)(265,286)
(266,285)(267,287)(268,288)(269,290)(270,289)(271,291)(272,292)(273,294)
(274,293)(275,295)(276,296)(277,298)(278,297)(279,299)(280,300)(301,302)
(305,306)(309,310)(313,314)(317,318)(321,342)(322,341)(323,343)(324,344)
(325,346)(326,345)(327,347)(328,348)(329,350)(330,349)(331,351)(332,352)
(333,354)(334,353)(335,355)(336,356)(337,358)(338,357)(339,359)(340,360)
(361,422)(362,421)(363,423)(364,424)(365,426)(366,425)(367,427)(368,428)
(369,430)(370,429)(371,431)(372,432)(373,434)(374,433)(375,435)(376,436)
(377,438)(378,437)(379,439)(380,440)(381,462)(382,461)(383,463)(384,464)
(385,466)(386,465)(387,467)(388,468)(389,470)(390,469)(391,471)(392,472)
(393,474)(394,473)(395,475)(396,476)(397,478)(398,477)(399,479)(400,480)
(401,442)(402,441)(403,443)(404,444)(405,446)(406,445)(407,447)(408,448)
(409,450)(410,449)(411,451)(412,452)(413,454)(414,453)(415,455)(416,456)
(417,458)(418,457)(419,459)(420,460);;
s3 := ( 1,121)( 2,122)( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)( 8,128)
( 9,129)( 10,130)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)( 16,136)
( 17,137)( 18,138)( 19,139)( 20,140)( 21,141)( 22,142)( 23,143)( 24,144)
( 25,145)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,151)( 32,152)
( 33,153)( 34,154)( 35,155)( 36,156)( 37,157)( 38,158)( 39,159)( 40,160)
( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)( 48,168)
( 49,169)( 50,170)( 51,171)( 52,172)( 53,173)( 54,174)( 55,175)( 56,176)
( 57,177)( 58,178)( 59,179)( 60,180)( 61,181)( 62,182)( 63,183)( 64,184)
( 65,185)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,191)( 72,192)
( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)
( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,206)( 87,207)( 88,208)
( 89,209)( 90,210)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)( 96,216)
( 97,217)( 98,218)( 99,219)(100,220)(101,221)(102,222)(103,223)(104,224)
(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)(112,232)
(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)(120,240)
(241,361)(242,362)(243,363)(244,364)(245,365)(246,366)(247,367)(248,368)
(249,369)(250,370)(251,371)(252,372)(253,373)(254,374)(255,375)(256,376)
(257,377)(258,378)(259,379)(260,380)(261,381)(262,382)(263,383)(264,384)
(265,385)(266,386)(267,387)(268,388)(269,389)(270,390)(271,391)(272,392)
(273,393)(274,394)(275,395)(276,396)(277,397)(278,398)(279,399)(280,400)
(281,401)(282,402)(283,403)(284,404)(285,405)(286,406)(287,407)(288,408)
(289,409)(290,410)(291,411)(292,412)(293,413)(294,414)(295,415)(296,416)
(297,417)(298,418)(299,419)(300,420)(301,421)(302,422)(303,423)(304,424)
(305,425)(306,426)(307,427)(308,428)(309,429)(310,430)(311,431)(312,432)
(313,433)(314,434)(315,435)(316,436)(317,437)(318,438)(319,439)(320,440)
(321,441)(322,442)(323,443)(324,444)(325,445)(326,446)(327,447)(328,448)
(329,449)(330,450)(331,451)(332,452)(333,453)(334,454)(335,455)(336,456)
(337,457)(338,458)(339,459)(340,460)(341,461)(342,462)(343,463)(344,464)
(345,465)(346,466)(347,467)(348,468)(349,469)(350,470)(351,471)(352,472)
(353,473)(354,474)(355,475)(356,476)(357,477)(358,478)(359,479)(360,480);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(480)!( 3, 4)( 5, 17)( 6, 18)( 7, 20)( 8, 19)( 9, 13)( 10, 14)
( 11, 16)( 12, 15)( 21, 41)( 22, 42)( 23, 44)( 24, 43)( 25, 57)( 26, 58)
( 27, 60)( 28, 59)( 29, 53)( 30, 54)( 31, 56)( 32, 55)( 33, 49)( 34, 50)
( 35, 52)( 36, 51)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 63, 64)( 65, 77)
( 66, 78)( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)( 81,101)
( 82,102)( 83,104)( 84,103)( 85,117)( 86,118)( 87,120)( 88,119)( 89,113)
( 90,114)( 91,116)( 92,115)( 93,109)( 94,110)( 95,112)( 96,111)( 97,105)
( 98,106)( 99,108)(100,107)(123,124)(125,137)(126,138)(127,140)(128,139)
(129,133)(130,134)(131,136)(132,135)(141,161)(142,162)(143,164)(144,163)
(145,177)(146,178)(147,180)(148,179)(149,173)(150,174)(151,176)(152,175)
(153,169)(154,170)(155,172)(156,171)(157,165)(158,166)(159,168)(160,167)
(183,184)(185,197)(186,198)(187,200)(188,199)(189,193)(190,194)(191,196)
(192,195)(201,221)(202,222)(203,224)(204,223)(205,237)(206,238)(207,240)
(208,239)(209,233)(210,234)(211,236)(212,235)(213,229)(214,230)(215,232)
(216,231)(217,225)(218,226)(219,228)(220,227)(243,244)(245,257)(246,258)
(247,260)(248,259)(249,253)(250,254)(251,256)(252,255)(261,281)(262,282)
(263,284)(264,283)(265,297)(266,298)(267,300)(268,299)(269,293)(270,294)
(271,296)(272,295)(273,289)(274,290)(275,292)(276,291)(277,285)(278,286)
(279,288)(280,287)(303,304)(305,317)(306,318)(307,320)(308,319)(309,313)
(310,314)(311,316)(312,315)(321,341)(322,342)(323,344)(324,343)(325,357)
(326,358)(327,360)(328,359)(329,353)(330,354)(331,356)(332,355)(333,349)
(334,350)(335,352)(336,351)(337,345)(338,346)(339,348)(340,347)(363,364)
(365,377)(366,378)(367,380)(368,379)(369,373)(370,374)(371,376)(372,375)
(381,401)(382,402)(383,404)(384,403)(385,417)(386,418)(387,420)(388,419)
(389,413)(390,414)(391,416)(392,415)(393,409)(394,410)(395,412)(396,411)
(397,405)(398,406)(399,408)(400,407)(423,424)(425,437)(426,438)(427,440)
(428,439)(429,433)(430,434)(431,436)(432,435)(441,461)(442,462)(443,464)
(444,463)(445,477)(446,478)(447,480)(448,479)(449,473)(450,474)(451,476)
(452,475)(453,469)(454,470)(455,472)(456,471)(457,465)(458,466)(459,468)
(460,467);
s1 := Sym(480)!( 1,265)( 2,268)( 3,267)( 4,266)( 5,261)( 6,264)( 7,263)
( 8,262)( 9,277)( 10,280)( 11,279)( 12,278)( 13,273)( 14,276)( 15,275)
( 16,274)( 17,269)( 18,272)( 19,271)( 20,270)( 21,245)( 22,248)( 23,247)
( 24,246)( 25,241)( 26,244)( 27,243)( 28,242)( 29,257)( 30,260)( 31,259)
( 32,258)( 33,253)( 34,256)( 35,255)( 36,254)( 37,249)( 38,252)( 39,251)
( 40,250)( 41,285)( 42,288)( 43,287)( 44,286)( 45,281)( 46,284)( 47,283)
( 48,282)( 49,297)( 50,300)( 51,299)( 52,298)( 53,293)( 54,296)( 55,295)
( 56,294)( 57,289)( 58,292)( 59,291)( 60,290)( 61,325)( 62,328)( 63,327)
( 64,326)( 65,321)( 66,324)( 67,323)( 68,322)( 69,337)( 70,340)( 71,339)
( 72,338)( 73,333)( 74,336)( 75,335)( 76,334)( 77,329)( 78,332)( 79,331)
( 80,330)( 81,305)( 82,308)( 83,307)( 84,306)( 85,301)( 86,304)( 87,303)
( 88,302)( 89,317)( 90,320)( 91,319)( 92,318)( 93,313)( 94,316)( 95,315)
( 96,314)( 97,309)( 98,312)( 99,311)(100,310)(101,345)(102,348)(103,347)
(104,346)(105,341)(106,344)(107,343)(108,342)(109,357)(110,360)(111,359)
(112,358)(113,353)(114,356)(115,355)(116,354)(117,349)(118,352)(119,351)
(120,350)(121,385)(122,388)(123,387)(124,386)(125,381)(126,384)(127,383)
(128,382)(129,397)(130,400)(131,399)(132,398)(133,393)(134,396)(135,395)
(136,394)(137,389)(138,392)(139,391)(140,390)(141,365)(142,368)(143,367)
(144,366)(145,361)(146,364)(147,363)(148,362)(149,377)(150,380)(151,379)
(152,378)(153,373)(154,376)(155,375)(156,374)(157,369)(158,372)(159,371)
(160,370)(161,405)(162,408)(163,407)(164,406)(165,401)(166,404)(167,403)
(168,402)(169,417)(170,420)(171,419)(172,418)(173,413)(174,416)(175,415)
(176,414)(177,409)(178,412)(179,411)(180,410)(181,445)(182,448)(183,447)
(184,446)(185,441)(186,444)(187,443)(188,442)(189,457)(190,460)(191,459)
(192,458)(193,453)(194,456)(195,455)(196,454)(197,449)(198,452)(199,451)
(200,450)(201,425)(202,428)(203,427)(204,426)(205,421)(206,424)(207,423)
(208,422)(209,437)(210,440)(211,439)(212,438)(213,433)(214,436)(215,435)
(216,434)(217,429)(218,432)(219,431)(220,430)(221,465)(222,468)(223,467)
(224,466)(225,461)(226,464)(227,463)(228,462)(229,477)(230,480)(231,479)
(232,478)(233,473)(234,476)(235,475)(236,474)(237,469)(238,472)(239,471)
(240,470);
s2 := Sym(480)!( 1, 2)( 5, 6)( 9, 10)( 13, 14)( 17, 18)( 21, 42)( 22, 41)
( 23, 43)( 24, 44)( 25, 46)( 26, 45)( 27, 47)( 28, 48)( 29, 50)( 30, 49)
( 31, 51)( 32, 52)( 33, 54)( 34, 53)( 35, 55)( 36, 56)( 37, 58)( 38, 57)
( 39, 59)( 40, 60)( 61, 62)( 65, 66)( 69, 70)( 73, 74)( 77, 78)( 81,102)
( 82,101)( 83,103)( 84,104)( 85,106)( 86,105)( 87,107)( 88,108)( 89,110)
( 90,109)( 91,111)( 92,112)( 93,114)( 94,113)( 95,115)( 96,116)( 97,118)
( 98,117)( 99,119)(100,120)(121,182)(122,181)(123,183)(124,184)(125,186)
(126,185)(127,187)(128,188)(129,190)(130,189)(131,191)(132,192)(133,194)
(134,193)(135,195)(136,196)(137,198)(138,197)(139,199)(140,200)(141,222)
(142,221)(143,223)(144,224)(145,226)(146,225)(147,227)(148,228)(149,230)
(150,229)(151,231)(152,232)(153,234)(154,233)(155,235)(156,236)(157,238)
(158,237)(159,239)(160,240)(161,202)(162,201)(163,203)(164,204)(165,206)
(166,205)(167,207)(168,208)(169,210)(170,209)(171,211)(172,212)(173,214)
(174,213)(175,215)(176,216)(177,218)(178,217)(179,219)(180,220)(241,242)
(245,246)(249,250)(253,254)(257,258)(261,282)(262,281)(263,283)(264,284)
(265,286)(266,285)(267,287)(268,288)(269,290)(270,289)(271,291)(272,292)
(273,294)(274,293)(275,295)(276,296)(277,298)(278,297)(279,299)(280,300)
(301,302)(305,306)(309,310)(313,314)(317,318)(321,342)(322,341)(323,343)
(324,344)(325,346)(326,345)(327,347)(328,348)(329,350)(330,349)(331,351)
(332,352)(333,354)(334,353)(335,355)(336,356)(337,358)(338,357)(339,359)
(340,360)(361,422)(362,421)(363,423)(364,424)(365,426)(366,425)(367,427)
(368,428)(369,430)(370,429)(371,431)(372,432)(373,434)(374,433)(375,435)
(376,436)(377,438)(378,437)(379,439)(380,440)(381,462)(382,461)(383,463)
(384,464)(385,466)(386,465)(387,467)(388,468)(389,470)(390,469)(391,471)
(392,472)(393,474)(394,473)(395,475)(396,476)(397,478)(398,477)(399,479)
(400,480)(401,442)(402,441)(403,443)(404,444)(405,446)(406,445)(407,447)
(408,448)(409,450)(410,449)(411,451)(412,452)(413,454)(414,453)(415,455)
(416,456)(417,458)(418,457)(419,459)(420,460);
s3 := Sym(480)!( 1,121)( 2,122)( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)
( 8,128)( 9,129)( 10,130)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)
( 16,136)( 17,137)( 18,138)( 19,139)( 20,140)( 21,141)( 22,142)( 23,143)
( 24,144)( 25,145)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,151)
( 32,152)( 33,153)( 34,154)( 35,155)( 36,156)( 37,157)( 38,158)( 39,159)
( 40,160)( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)
( 48,168)( 49,169)( 50,170)( 51,171)( 52,172)( 53,173)( 54,174)( 55,175)
( 56,176)( 57,177)( 58,178)( 59,179)( 60,180)( 61,181)( 62,182)( 63,183)
( 64,184)( 65,185)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,191)
( 72,192)( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)
( 80,200)( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,206)( 87,207)
( 88,208)( 89,209)( 90,210)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)
( 96,216)( 97,217)( 98,218)( 99,219)(100,220)(101,221)(102,222)(103,223)
(104,224)(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)
(112,232)(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)
(120,240)(241,361)(242,362)(243,363)(244,364)(245,365)(246,366)(247,367)
(248,368)(249,369)(250,370)(251,371)(252,372)(253,373)(254,374)(255,375)
(256,376)(257,377)(258,378)(259,379)(260,380)(261,381)(262,382)(263,383)
(264,384)(265,385)(266,386)(267,387)(268,388)(269,389)(270,390)(271,391)
(272,392)(273,393)(274,394)(275,395)(276,396)(277,397)(278,398)(279,399)
(280,400)(281,401)(282,402)(283,403)(284,404)(285,405)(286,406)(287,407)
(288,408)(289,409)(290,410)(291,411)(292,412)(293,413)(294,414)(295,415)
(296,416)(297,417)(298,418)(299,419)(300,420)(301,421)(302,422)(303,423)
(304,424)(305,425)(306,426)(307,427)(308,428)(309,429)(310,430)(311,431)
(312,432)(313,433)(314,434)(315,435)(316,436)(317,437)(318,438)(319,439)
(320,440)(321,441)(322,442)(323,443)(324,444)(325,445)(326,446)(327,447)
(328,448)(329,449)(330,450)(331,451)(332,452)(333,453)(334,454)(335,455)
(336,456)(337,457)(338,458)(339,459)(340,460)(341,461)(342,462)(343,463)
(344,464)(345,465)(346,466)(347,467)(348,468)(349,469)(350,470)(351,471)
(352,472)(353,473)(354,474)(355,475)(356,476)(357,477)(358,478)(359,479)
(360,480);
poly := sub<Sym(480)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2 >;
References : None.
to this polytope