Polytope of Type {2,8,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,15}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240269)
Rank : 4
Schlafli Type : {2,8,15}
Number of vertices, edges, etc : 2, 32, 240, 60
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,15}*960
   3-fold quotients : {2,8,5}*640b
   6-fold quotients : {2,4,5}*320
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 16)(  8, 15)(  9, 18)( 10, 17)
( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 32)( 24, 31)( 25, 34)( 26, 33)
( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 41, 50)( 42, 49)
( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 57, 66)( 58, 65)
( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 80)( 72, 79)( 73, 82)( 74, 81)
( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 96)( 88, 95)( 89, 98)( 90, 97)
( 99,107)(100,108)(101,109)(102,110)(103,112)(104,111)(105,114)(106,113)
(115,123)(116,124)(117,125)(118,126)(119,128)(120,127)(121,130)(122,129)
(131,139)(132,140)(133,141)(134,142)(135,144)(136,143)(137,146)(138,145)
(147,155)(148,156)(149,157)(150,158)(151,160)(152,159)(153,162)(154,161)
(163,171)(164,172)(165,173)(166,174)(167,176)(168,175)(169,178)(170,177)
(179,187)(180,188)(181,189)(182,190)(183,192)(184,191)(185,194)(186,193)
(195,203)(196,204)(197,205)(198,206)(199,208)(200,207)(201,210)(202,209)
(211,219)(212,220)(213,221)(214,222)(215,224)(216,223)(217,226)(218,225)
(227,235)(228,236)(229,237)(230,238)(231,240)(232,239)(233,242)(234,241)
(243,251)(244,252)(245,253)(246,254)(247,256)(248,255)(249,258)(250,257)
(259,267)(260,268)(261,269)(262,270)(263,272)(264,271)(265,274)(266,273)
(275,283)(276,284)(277,285)(278,286)(279,288)(280,287)(281,290)(282,289)
(291,299)(292,300)(293,301)(294,302)(295,304)(296,303)(297,306)(298,305)
(307,315)(308,316)(309,317)(310,318)(311,320)(312,319)(313,322)(314,321)
(323,331)(324,332)(325,333)(326,334)(327,336)(328,335)(329,338)(330,337)
(339,347)(340,348)(341,349)(342,350)(343,352)(344,351)(345,354)(346,353)
(355,363)(356,364)(357,365)(358,366)(359,368)(360,367)(361,370)(362,369)
(371,379)(372,380)(373,381)(374,382)(375,384)(376,383)(377,386)(378,385)
(387,395)(388,396)(389,397)(390,398)(391,400)(392,399)(393,402)(394,401)
(403,411)(404,412)(405,413)(406,414)(407,416)(408,415)(409,418)(410,417)
(419,427)(420,428)(421,429)(422,430)(423,432)(424,431)(425,434)(426,433)
(435,443)(436,444)(437,445)(438,446)(439,448)(440,447)(441,450)(442,449)
(451,459)(452,460)(453,461)(454,462)(455,464)(456,463)(457,466)(458,465)
(467,475)(468,476)(469,477)(470,478)(471,480)(472,479)(473,482)(474,481);;
s2 := (  5, 29)(  6, 30)(  7, 20)(  8, 19)(  9, 13)( 10, 14)( 11, 32)( 12, 31)
( 17, 25)( 18, 26)( 21, 34)( 22, 33)( 23, 24)( 27, 28)( 35,131)( 36,132)
( 37,157)( 38,158)( 39,148)( 40,147)( 41,141)( 42,142)( 43,160)( 44,159)
( 45,137)( 46,138)( 47,143)( 48,144)( 49,153)( 50,154)( 51,136)( 52,135)
( 53,162)( 54,161)( 55,152)( 56,151)( 57,145)( 58,146)( 59,156)( 60,155)
( 61,133)( 62,134)( 63,140)( 64,139)( 65,150)( 66,149)( 67, 99)( 68,100)
( 69,125)( 70,126)( 71,116)( 72,115)( 73,109)( 74,110)( 75,128)( 76,127)
( 77,105)( 78,106)( 79,111)( 80,112)( 81,121)( 82,122)( 83,104)( 84,103)
( 85,130)( 86,129)( 87,120)( 88,119)( 89,113)( 90,114)( 91,124)( 92,123)
( 93,101)( 94,102)( 95,108)( 96,107)( 97,118)( 98,117)(163,323)(164,324)
(165,349)(166,350)(167,340)(168,339)(169,333)(170,334)(171,352)(172,351)
(173,329)(174,330)(175,335)(176,336)(177,345)(178,346)(179,328)(180,327)
(181,354)(182,353)(183,344)(184,343)(185,337)(186,338)(187,348)(188,347)
(189,325)(190,326)(191,332)(192,331)(193,342)(194,341)(195,451)(196,452)
(197,477)(198,478)(199,468)(200,467)(201,461)(202,462)(203,480)(204,479)
(205,457)(206,458)(207,463)(208,464)(209,473)(210,474)(211,456)(212,455)
(213,482)(214,481)(215,472)(216,471)(217,465)(218,466)(219,476)(220,475)
(221,453)(222,454)(223,460)(224,459)(225,470)(226,469)(227,419)(228,420)
(229,445)(230,446)(231,436)(232,435)(233,429)(234,430)(235,448)(236,447)
(237,425)(238,426)(239,431)(240,432)(241,441)(242,442)(243,424)(244,423)
(245,450)(246,449)(247,440)(248,439)(249,433)(250,434)(251,444)(252,443)
(253,421)(254,422)(255,428)(256,427)(257,438)(258,437)(259,387)(260,388)
(261,413)(262,414)(263,404)(264,403)(265,397)(266,398)(267,416)(268,415)
(269,393)(270,394)(271,399)(272,400)(273,409)(274,410)(275,392)(276,391)
(277,418)(278,417)(279,408)(280,407)(281,401)(282,402)(283,412)(284,411)
(285,389)(286,390)(287,396)(288,395)(289,406)(290,405)(291,355)(292,356)
(293,381)(294,382)(295,372)(296,371)(297,365)(298,366)(299,384)(300,383)
(301,361)(302,362)(303,367)(304,368)(305,377)(306,378)(307,360)(308,359)
(309,386)(310,385)(311,376)(312,375)(313,369)(314,370)(315,380)(316,379)
(317,357)(318,358)(319,364)(320,363)(321,374)(322,373);;
s3 := (  3,291)(  4,292)(  5,294)(  6,293)(  7,297)(  8,298)(  9,295)( 10,296)
( 11,299)( 12,300)( 13,302)( 14,301)( 15,305)( 16,306)( 17,303)( 18,304)
( 19,316)( 20,315)( 21,317)( 22,318)( 23,322)( 24,321)( 25,320)( 26,319)
( 27,308)( 28,307)( 29,309)( 30,310)( 31,314)( 32,313)( 33,312)( 34,311)
( 35,259)( 36,260)( 37,262)( 38,261)( 39,265)( 40,266)( 41,263)( 42,264)
( 43,267)( 44,268)( 45,270)( 46,269)( 47,273)( 48,274)( 49,271)( 50,272)
( 51,284)( 52,283)( 53,285)( 54,286)( 55,290)( 56,289)( 57,288)( 58,287)
( 59,276)( 60,275)( 61,277)( 62,278)( 63,282)( 64,281)( 65,280)( 66,279)
( 67,227)( 68,228)( 69,230)( 70,229)( 71,233)( 72,234)( 73,231)( 74,232)
( 75,235)( 76,236)( 77,238)( 78,237)( 79,241)( 80,242)( 81,239)( 82,240)
( 83,252)( 84,251)( 85,253)( 86,254)( 87,258)( 88,257)( 89,256)( 90,255)
( 91,244)( 92,243)( 93,245)( 94,246)( 95,250)( 96,249)( 97,248)( 98,247)
( 99,195)(100,196)(101,198)(102,197)(103,201)(104,202)(105,199)(106,200)
(107,203)(108,204)(109,206)(110,205)(111,209)(112,210)(113,207)(114,208)
(115,220)(116,219)(117,221)(118,222)(119,226)(120,225)(121,224)(122,223)
(123,212)(124,211)(125,213)(126,214)(127,218)(128,217)(129,216)(130,215)
(131,163)(132,164)(133,166)(134,165)(135,169)(136,170)(137,167)(138,168)
(139,171)(140,172)(141,174)(142,173)(143,177)(144,178)(145,175)(146,176)
(147,188)(148,187)(149,189)(150,190)(151,194)(152,193)(153,192)(154,191)
(155,180)(156,179)(157,181)(158,182)(159,186)(160,185)(161,184)(162,183)
(323,451)(324,452)(325,454)(326,453)(327,457)(328,458)(329,455)(330,456)
(331,459)(332,460)(333,462)(334,461)(335,465)(336,466)(337,463)(338,464)
(339,476)(340,475)(341,477)(342,478)(343,482)(344,481)(345,480)(346,479)
(347,468)(348,467)(349,469)(350,470)(351,474)(352,473)(353,472)(354,471)
(355,419)(356,420)(357,422)(358,421)(359,425)(360,426)(361,423)(362,424)
(363,427)(364,428)(365,430)(366,429)(367,433)(368,434)(369,431)(370,432)
(371,444)(372,443)(373,445)(374,446)(375,450)(376,449)(377,448)(378,447)
(379,436)(380,435)(381,437)(382,438)(383,442)(384,441)(385,440)(386,439)
(389,390)(391,393)(392,394)(397,398)(399,401)(400,402)(403,412)(404,411)
(405,413)(406,414)(407,418)(408,417)(409,416)(410,415);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s3*s2*s1, 
s1*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(482)!(1,2);
s1 := Sym(482)!(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 16)(  8, 15)(  9, 18)
( 10, 17)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 32)( 24, 31)( 25, 34)
( 26, 33)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 41, 50)
( 42, 49)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 57, 66)
( 58, 65)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 80)( 72, 79)( 73, 82)
( 74, 81)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 96)( 88, 95)( 89, 98)
( 90, 97)( 99,107)(100,108)(101,109)(102,110)(103,112)(104,111)(105,114)
(106,113)(115,123)(116,124)(117,125)(118,126)(119,128)(120,127)(121,130)
(122,129)(131,139)(132,140)(133,141)(134,142)(135,144)(136,143)(137,146)
(138,145)(147,155)(148,156)(149,157)(150,158)(151,160)(152,159)(153,162)
(154,161)(163,171)(164,172)(165,173)(166,174)(167,176)(168,175)(169,178)
(170,177)(179,187)(180,188)(181,189)(182,190)(183,192)(184,191)(185,194)
(186,193)(195,203)(196,204)(197,205)(198,206)(199,208)(200,207)(201,210)
(202,209)(211,219)(212,220)(213,221)(214,222)(215,224)(216,223)(217,226)
(218,225)(227,235)(228,236)(229,237)(230,238)(231,240)(232,239)(233,242)
(234,241)(243,251)(244,252)(245,253)(246,254)(247,256)(248,255)(249,258)
(250,257)(259,267)(260,268)(261,269)(262,270)(263,272)(264,271)(265,274)
(266,273)(275,283)(276,284)(277,285)(278,286)(279,288)(280,287)(281,290)
(282,289)(291,299)(292,300)(293,301)(294,302)(295,304)(296,303)(297,306)
(298,305)(307,315)(308,316)(309,317)(310,318)(311,320)(312,319)(313,322)
(314,321)(323,331)(324,332)(325,333)(326,334)(327,336)(328,335)(329,338)
(330,337)(339,347)(340,348)(341,349)(342,350)(343,352)(344,351)(345,354)
(346,353)(355,363)(356,364)(357,365)(358,366)(359,368)(360,367)(361,370)
(362,369)(371,379)(372,380)(373,381)(374,382)(375,384)(376,383)(377,386)
(378,385)(387,395)(388,396)(389,397)(390,398)(391,400)(392,399)(393,402)
(394,401)(403,411)(404,412)(405,413)(406,414)(407,416)(408,415)(409,418)
(410,417)(419,427)(420,428)(421,429)(422,430)(423,432)(424,431)(425,434)
(426,433)(435,443)(436,444)(437,445)(438,446)(439,448)(440,447)(441,450)
(442,449)(451,459)(452,460)(453,461)(454,462)(455,464)(456,463)(457,466)
(458,465)(467,475)(468,476)(469,477)(470,478)(471,480)(472,479)(473,482)
(474,481);
s2 := Sym(482)!(  5, 29)(  6, 30)(  7, 20)(  8, 19)(  9, 13)( 10, 14)( 11, 32)
( 12, 31)( 17, 25)( 18, 26)( 21, 34)( 22, 33)( 23, 24)( 27, 28)( 35,131)
( 36,132)( 37,157)( 38,158)( 39,148)( 40,147)( 41,141)( 42,142)( 43,160)
( 44,159)( 45,137)( 46,138)( 47,143)( 48,144)( 49,153)( 50,154)( 51,136)
( 52,135)( 53,162)( 54,161)( 55,152)( 56,151)( 57,145)( 58,146)( 59,156)
( 60,155)( 61,133)( 62,134)( 63,140)( 64,139)( 65,150)( 66,149)( 67, 99)
( 68,100)( 69,125)( 70,126)( 71,116)( 72,115)( 73,109)( 74,110)( 75,128)
( 76,127)( 77,105)( 78,106)( 79,111)( 80,112)( 81,121)( 82,122)( 83,104)
( 84,103)( 85,130)( 86,129)( 87,120)( 88,119)( 89,113)( 90,114)( 91,124)
( 92,123)( 93,101)( 94,102)( 95,108)( 96,107)( 97,118)( 98,117)(163,323)
(164,324)(165,349)(166,350)(167,340)(168,339)(169,333)(170,334)(171,352)
(172,351)(173,329)(174,330)(175,335)(176,336)(177,345)(178,346)(179,328)
(180,327)(181,354)(182,353)(183,344)(184,343)(185,337)(186,338)(187,348)
(188,347)(189,325)(190,326)(191,332)(192,331)(193,342)(194,341)(195,451)
(196,452)(197,477)(198,478)(199,468)(200,467)(201,461)(202,462)(203,480)
(204,479)(205,457)(206,458)(207,463)(208,464)(209,473)(210,474)(211,456)
(212,455)(213,482)(214,481)(215,472)(216,471)(217,465)(218,466)(219,476)
(220,475)(221,453)(222,454)(223,460)(224,459)(225,470)(226,469)(227,419)
(228,420)(229,445)(230,446)(231,436)(232,435)(233,429)(234,430)(235,448)
(236,447)(237,425)(238,426)(239,431)(240,432)(241,441)(242,442)(243,424)
(244,423)(245,450)(246,449)(247,440)(248,439)(249,433)(250,434)(251,444)
(252,443)(253,421)(254,422)(255,428)(256,427)(257,438)(258,437)(259,387)
(260,388)(261,413)(262,414)(263,404)(264,403)(265,397)(266,398)(267,416)
(268,415)(269,393)(270,394)(271,399)(272,400)(273,409)(274,410)(275,392)
(276,391)(277,418)(278,417)(279,408)(280,407)(281,401)(282,402)(283,412)
(284,411)(285,389)(286,390)(287,396)(288,395)(289,406)(290,405)(291,355)
(292,356)(293,381)(294,382)(295,372)(296,371)(297,365)(298,366)(299,384)
(300,383)(301,361)(302,362)(303,367)(304,368)(305,377)(306,378)(307,360)
(308,359)(309,386)(310,385)(311,376)(312,375)(313,369)(314,370)(315,380)
(316,379)(317,357)(318,358)(319,364)(320,363)(321,374)(322,373);
s3 := Sym(482)!(  3,291)(  4,292)(  5,294)(  6,293)(  7,297)(  8,298)(  9,295)
( 10,296)( 11,299)( 12,300)( 13,302)( 14,301)( 15,305)( 16,306)( 17,303)
( 18,304)( 19,316)( 20,315)( 21,317)( 22,318)( 23,322)( 24,321)( 25,320)
( 26,319)( 27,308)( 28,307)( 29,309)( 30,310)( 31,314)( 32,313)( 33,312)
( 34,311)( 35,259)( 36,260)( 37,262)( 38,261)( 39,265)( 40,266)( 41,263)
( 42,264)( 43,267)( 44,268)( 45,270)( 46,269)( 47,273)( 48,274)( 49,271)
( 50,272)( 51,284)( 52,283)( 53,285)( 54,286)( 55,290)( 56,289)( 57,288)
( 58,287)( 59,276)( 60,275)( 61,277)( 62,278)( 63,282)( 64,281)( 65,280)
( 66,279)( 67,227)( 68,228)( 69,230)( 70,229)( 71,233)( 72,234)( 73,231)
( 74,232)( 75,235)( 76,236)( 77,238)( 78,237)( 79,241)( 80,242)( 81,239)
( 82,240)( 83,252)( 84,251)( 85,253)( 86,254)( 87,258)( 88,257)( 89,256)
( 90,255)( 91,244)( 92,243)( 93,245)( 94,246)( 95,250)( 96,249)( 97,248)
( 98,247)( 99,195)(100,196)(101,198)(102,197)(103,201)(104,202)(105,199)
(106,200)(107,203)(108,204)(109,206)(110,205)(111,209)(112,210)(113,207)
(114,208)(115,220)(116,219)(117,221)(118,222)(119,226)(120,225)(121,224)
(122,223)(123,212)(124,211)(125,213)(126,214)(127,218)(128,217)(129,216)
(130,215)(131,163)(132,164)(133,166)(134,165)(135,169)(136,170)(137,167)
(138,168)(139,171)(140,172)(141,174)(142,173)(143,177)(144,178)(145,175)
(146,176)(147,188)(148,187)(149,189)(150,190)(151,194)(152,193)(153,192)
(154,191)(155,180)(156,179)(157,181)(158,182)(159,186)(160,185)(161,184)
(162,183)(323,451)(324,452)(325,454)(326,453)(327,457)(328,458)(329,455)
(330,456)(331,459)(332,460)(333,462)(334,461)(335,465)(336,466)(337,463)
(338,464)(339,476)(340,475)(341,477)(342,478)(343,482)(344,481)(345,480)
(346,479)(347,468)(348,467)(349,469)(350,470)(351,474)(352,473)(353,472)
(354,471)(355,419)(356,420)(357,422)(358,421)(359,425)(360,426)(361,423)
(362,424)(363,427)(364,428)(365,430)(366,429)(367,433)(368,434)(369,431)
(370,432)(371,444)(372,443)(373,445)(374,446)(375,450)(376,449)(377,448)
(378,447)(379,436)(380,435)(381,437)(382,438)(383,442)(384,441)(385,440)
(386,439)(389,390)(391,393)(392,394)(397,398)(399,401)(400,402)(403,412)
(404,411)(405,413)(406,414)(407,418)(408,417)(409,416)(410,415);
poly := sub<Sym(482)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s3*s2*s1, 
s1*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope