Polytope of Type {2,2,4,60}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,60}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240289)
Rank : 5
Schlafli Type : {2,2,4,60}
Number of vertices, edges, etc : 2, 2, 4, 120, 60
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,4,30}*960b
   4-fold quotients : {2,2,4,15}*480
   5-fold quotients : {2,2,4,12}*384c
   10-fold quotients : {2,2,4,6}*192c
   20-fold quotients : {2,2,4,3}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  5, 67)(  6, 68)(  7, 65)(  8, 66)(  9, 71)( 10, 72)( 11, 69)( 12, 70)
( 13, 75)( 14, 76)( 15, 73)( 16, 74)( 17, 79)( 18, 80)( 19, 77)( 20, 78)
( 21, 83)( 22, 84)( 23, 81)( 24, 82)( 25, 87)( 26, 88)( 27, 85)( 28, 86)
( 29, 91)( 30, 92)( 31, 89)( 32, 90)( 33, 95)( 34, 96)( 35, 93)( 36, 94)
( 37, 99)( 38,100)( 39, 97)( 40, 98)( 41,103)( 42,104)( 43,101)( 44,102)
( 45,107)( 46,108)( 47,105)( 48,106)( 49,111)( 50,112)( 51,109)( 52,110)
( 53,115)( 54,116)( 55,113)( 56,114)( 57,119)( 58,120)( 59,117)( 60,118)
( 61,123)( 62,124)( 63,121)( 64,122)(125,187)(126,188)(127,185)(128,186)
(129,191)(130,192)(131,189)(132,190)(133,195)(134,196)(135,193)(136,194)
(137,199)(138,200)(139,197)(140,198)(141,203)(142,204)(143,201)(144,202)
(145,207)(146,208)(147,205)(148,206)(149,211)(150,212)(151,209)(152,210)
(153,215)(154,216)(155,213)(156,214)(157,219)(158,220)(159,217)(160,218)
(161,223)(162,224)(163,221)(164,222)(165,227)(166,228)(167,225)(168,226)
(169,231)(170,232)(171,229)(172,230)(173,235)(174,236)(175,233)(176,234)
(177,239)(178,240)(179,237)(180,238)(181,243)(182,244)(183,241)(184,242);;
s3 := (  6,  7)(  9, 21)( 10, 23)( 11, 22)( 12, 24)( 13, 17)( 14, 19)( 15, 18)
( 16, 20)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 61)( 30, 63)( 31, 62)
( 32, 64)( 33, 57)( 34, 59)( 35, 58)( 36, 60)( 37, 53)( 38, 55)( 39, 54)
( 40, 56)( 41, 49)( 42, 51)( 43, 50)( 44, 52)( 66, 67)( 69, 81)( 70, 83)
( 71, 82)( 72, 84)( 73, 77)( 74, 79)( 75, 78)( 76, 80)( 85,105)( 86,107)
( 87,106)( 88,108)( 89,121)( 90,123)( 91,122)( 92,124)( 93,117)( 94,119)
( 95,118)( 96,120)( 97,113)( 98,115)( 99,114)(100,116)(101,109)(102,111)
(103,110)(104,112)(125,185)(126,187)(127,186)(128,188)(129,201)(130,203)
(131,202)(132,204)(133,197)(134,199)(135,198)(136,200)(137,193)(138,195)
(139,194)(140,196)(141,189)(142,191)(143,190)(144,192)(145,225)(146,227)
(147,226)(148,228)(149,241)(150,243)(151,242)(152,244)(153,237)(154,239)
(155,238)(156,240)(157,233)(158,235)(159,234)(160,236)(161,229)(162,231)
(163,230)(164,232)(165,205)(166,207)(167,206)(168,208)(169,221)(170,223)
(171,222)(172,224)(173,217)(174,219)(175,218)(176,220)(177,213)(178,215)
(179,214)(180,216)(181,209)(182,211)(183,210)(184,212);;
s4 := (  5,169)(  6,172)(  7,171)(  8,170)(  9,165)( 10,168)( 11,167)( 12,166)
( 13,181)( 14,184)( 15,183)( 16,182)( 17,177)( 18,180)( 19,179)( 20,178)
( 21,173)( 22,176)( 23,175)( 24,174)( 25,149)( 26,152)( 27,151)( 28,150)
( 29,145)( 30,148)( 31,147)( 32,146)( 33,161)( 34,164)( 35,163)( 36,162)
( 37,157)( 38,160)( 39,159)( 40,158)( 41,153)( 42,156)( 43,155)( 44,154)
( 45,129)( 46,132)( 47,131)( 48,130)( 49,125)( 50,128)( 51,127)( 52,126)
( 53,141)( 54,144)( 55,143)( 56,142)( 57,137)( 58,140)( 59,139)( 60,138)
( 61,133)( 62,136)( 63,135)( 64,134)( 65,229)( 66,232)( 67,231)( 68,230)
( 69,225)( 70,228)( 71,227)( 72,226)( 73,241)( 74,244)( 75,243)( 76,242)
( 77,237)( 78,240)( 79,239)( 80,238)( 81,233)( 82,236)( 83,235)( 84,234)
( 85,209)( 86,212)( 87,211)( 88,210)( 89,205)( 90,208)( 91,207)( 92,206)
( 93,221)( 94,224)( 95,223)( 96,222)( 97,217)( 98,220)( 99,219)(100,218)
(101,213)(102,216)(103,215)(104,214)(105,189)(106,192)(107,191)(108,190)
(109,185)(110,188)(111,187)(112,186)(113,201)(114,204)(115,203)(116,202)
(117,197)(118,200)(119,199)(120,198)(121,193)(122,196)(123,195)(124,194);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(244)!(1,2);
s1 := Sym(244)!(3,4);
s2 := Sym(244)!(  5, 67)(  6, 68)(  7, 65)(  8, 66)(  9, 71)( 10, 72)( 11, 69)
( 12, 70)( 13, 75)( 14, 76)( 15, 73)( 16, 74)( 17, 79)( 18, 80)( 19, 77)
( 20, 78)( 21, 83)( 22, 84)( 23, 81)( 24, 82)( 25, 87)( 26, 88)( 27, 85)
( 28, 86)( 29, 91)( 30, 92)( 31, 89)( 32, 90)( 33, 95)( 34, 96)( 35, 93)
( 36, 94)( 37, 99)( 38,100)( 39, 97)( 40, 98)( 41,103)( 42,104)( 43,101)
( 44,102)( 45,107)( 46,108)( 47,105)( 48,106)( 49,111)( 50,112)( 51,109)
( 52,110)( 53,115)( 54,116)( 55,113)( 56,114)( 57,119)( 58,120)( 59,117)
( 60,118)( 61,123)( 62,124)( 63,121)( 64,122)(125,187)(126,188)(127,185)
(128,186)(129,191)(130,192)(131,189)(132,190)(133,195)(134,196)(135,193)
(136,194)(137,199)(138,200)(139,197)(140,198)(141,203)(142,204)(143,201)
(144,202)(145,207)(146,208)(147,205)(148,206)(149,211)(150,212)(151,209)
(152,210)(153,215)(154,216)(155,213)(156,214)(157,219)(158,220)(159,217)
(160,218)(161,223)(162,224)(163,221)(164,222)(165,227)(166,228)(167,225)
(168,226)(169,231)(170,232)(171,229)(172,230)(173,235)(174,236)(175,233)
(176,234)(177,239)(178,240)(179,237)(180,238)(181,243)(182,244)(183,241)
(184,242);
s3 := Sym(244)!(  6,  7)(  9, 21)( 10, 23)( 11, 22)( 12, 24)( 13, 17)( 14, 19)
( 15, 18)( 16, 20)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 61)( 30, 63)
( 31, 62)( 32, 64)( 33, 57)( 34, 59)( 35, 58)( 36, 60)( 37, 53)( 38, 55)
( 39, 54)( 40, 56)( 41, 49)( 42, 51)( 43, 50)( 44, 52)( 66, 67)( 69, 81)
( 70, 83)( 71, 82)( 72, 84)( 73, 77)( 74, 79)( 75, 78)( 76, 80)( 85,105)
( 86,107)( 87,106)( 88,108)( 89,121)( 90,123)( 91,122)( 92,124)( 93,117)
( 94,119)( 95,118)( 96,120)( 97,113)( 98,115)( 99,114)(100,116)(101,109)
(102,111)(103,110)(104,112)(125,185)(126,187)(127,186)(128,188)(129,201)
(130,203)(131,202)(132,204)(133,197)(134,199)(135,198)(136,200)(137,193)
(138,195)(139,194)(140,196)(141,189)(142,191)(143,190)(144,192)(145,225)
(146,227)(147,226)(148,228)(149,241)(150,243)(151,242)(152,244)(153,237)
(154,239)(155,238)(156,240)(157,233)(158,235)(159,234)(160,236)(161,229)
(162,231)(163,230)(164,232)(165,205)(166,207)(167,206)(168,208)(169,221)
(170,223)(171,222)(172,224)(173,217)(174,219)(175,218)(176,220)(177,213)
(178,215)(179,214)(180,216)(181,209)(182,211)(183,210)(184,212);
s4 := Sym(244)!(  5,169)(  6,172)(  7,171)(  8,170)(  9,165)( 10,168)( 11,167)
( 12,166)( 13,181)( 14,184)( 15,183)( 16,182)( 17,177)( 18,180)( 19,179)
( 20,178)( 21,173)( 22,176)( 23,175)( 24,174)( 25,149)( 26,152)( 27,151)
( 28,150)( 29,145)( 30,148)( 31,147)( 32,146)( 33,161)( 34,164)( 35,163)
( 36,162)( 37,157)( 38,160)( 39,159)( 40,158)( 41,153)( 42,156)( 43,155)
( 44,154)( 45,129)( 46,132)( 47,131)( 48,130)( 49,125)( 50,128)( 51,127)
( 52,126)( 53,141)( 54,144)( 55,143)( 56,142)( 57,137)( 58,140)( 59,139)
( 60,138)( 61,133)( 62,136)( 63,135)( 64,134)( 65,229)( 66,232)( 67,231)
( 68,230)( 69,225)( 70,228)( 71,227)( 72,226)( 73,241)( 74,244)( 75,243)
( 76,242)( 77,237)( 78,240)( 79,239)( 80,238)( 81,233)( 82,236)( 83,235)
( 84,234)( 85,209)( 86,212)( 87,211)( 88,210)( 89,205)( 90,208)( 91,207)
( 92,206)( 93,221)( 94,224)( 95,223)( 96,222)( 97,217)( 98,220)( 99,219)
(100,218)(101,213)(102,216)(103,215)(104,214)(105,189)(106,192)(107,191)
(108,190)(109,185)(110,188)(111,187)(112,186)(113,201)(114,204)(115,203)
(116,202)(117,197)(118,200)(119,199)(120,198)(121,193)(122,196)(123,195)
(124,194);
poly := sub<Sym(244)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope