Polytope of Type {2,15,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,15,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,240399)
Rank : 4
Schlafli Type : {2,15,10}
Number of vertices, edges, etc : 2, 48, 240, 32
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,5,10}*640b
   6-fold quotients : {2,5,5}*320
   80-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 13)(  5, 16)(  6, 10)(  8, 17)(  9, 12)( 11, 15)( 19, 67)( 20, 77)
( 21, 80)( 22, 74)( 23, 71)( 24, 81)( 25, 76)( 26, 70)( 27, 79)( 28, 73)
( 29, 68)( 30, 78)( 31, 75)( 32, 69)( 33, 72)( 34, 82)( 35, 51)( 36, 61)
( 37, 64)( 38, 58)( 39, 55)( 40, 65)( 41, 60)( 42, 54)( 43, 63)( 44, 57)
( 45, 52)( 46, 62)( 47, 59)( 48, 53)( 49, 56)( 50, 66)( 83,163)( 84,173)
( 85,176)( 86,170)( 87,167)( 88,177)( 89,172)( 90,166)( 91,175)( 92,169)
( 93,164)( 94,174)( 95,171)( 96,165)( 97,168)( 98,178)( 99,227)(100,237)
(101,240)(102,234)(103,231)(104,241)(105,236)(106,230)(107,239)(108,233)
(109,228)(110,238)(111,235)(112,229)(113,232)(114,242)(115,211)(116,221)
(117,224)(118,218)(119,215)(120,225)(121,220)(122,214)(123,223)(124,217)
(125,212)(126,222)(127,219)(128,213)(129,216)(130,226)(131,195)(132,205)
(133,208)(134,202)(135,199)(136,209)(137,204)(138,198)(139,207)(140,201)
(141,196)(142,206)(143,203)(144,197)(145,200)(146,210)(147,179)(148,189)
(149,192)(150,186)(151,183)(152,193)(153,188)(154,182)(155,191)(156,185)
(157,180)(158,190)(159,187)(160,181)(161,184)(162,194);;
s2 := (  3, 99)(  4,100)(  5,102)(  6,101)(  7,104)(  8,103)(  9,105)( 10,106)
( 11,114)( 12,113)( 13,111)( 14,112)( 15,109)( 16,110)( 17,108)( 18,107)
( 19, 83)( 20, 84)( 21, 86)( 22, 85)( 23, 88)( 24, 87)( 25, 89)( 26, 90)
( 27, 98)( 28, 97)( 29, 95)( 30, 96)( 31, 93)( 32, 94)( 33, 92)( 34, 91)
( 35,147)( 36,148)( 37,150)( 38,149)( 39,152)( 40,151)( 41,153)( 42,154)
( 43,162)( 44,161)( 45,159)( 46,160)( 47,157)( 48,158)( 49,156)( 50,155)
( 51,131)( 52,132)( 53,134)( 54,133)( 55,136)( 56,135)( 57,137)( 58,138)
( 59,146)( 60,145)( 61,143)( 62,144)( 63,141)( 64,142)( 65,140)( 66,139)
( 67,115)( 68,116)( 69,118)( 70,117)( 71,120)( 72,119)( 73,121)( 74,122)
( 75,130)( 76,129)( 77,127)( 78,128)( 79,125)( 80,126)( 81,124)( 82,123)
(163,179)(164,180)(165,182)(166,181)(167,184)(168,183)(169,185)(170,186)
(171,194)(172,193)(173,191)(174,192)(175,189)(176,190)(177,188)(178,187)
(195,227)(196,228)(197,230)(198,229)(199,232)(200,231)(201,233)(202,234)
(203,242)(204,241)(205,239)(206,240)(207,237)(208,238)(209,236)(210,235)
(213,214)(215,216)(219,226)(220,225)(221,223)(222,224);;
s3 := (  3,  7)(  4, 17)(  5, 12)(  8, 13)(  9, 16)( 14, 18)( 19, 71)( 20, 81)
( 21, 76)( 22, 70)( 23, 67)( 24, 77)( 25, 80)( 26, 74)( 27, 75)( 28, 69)
( 29, 72)( 30, 82)( 31, 79)( 32, 73)( 33, 68)( 34, 78)( 35, 55)( 36, 65)
( 37, 60)( 38, 54)( 39, 51)( 40, 61)( 41, 64)( 42, 58)( 43, 59)( 44, 53)
( 45, 56)( 46, 66)( 47, 63)( 48, 57)( 49, 52)( 50, 62)( 83, 87)( 84, 97)
( 85, 92)( 88, 93)( 89, 96)( 94, 98)( 99,151)(100,161)(101,156)(102,150)
(103,147)(104,157)(105,160)(106,154)(107,155)(108,149)(109,152)(110,162)
(111,159)(112,153)(113,148)(114,158)(115,135)(116,145)(117,140)(118,134)
(119,131)(120,141)(121,144)(122,138)(123,139)(124,133)(125,136)(126,146)
(127,143)(128,137)(129,132)(130,142)(163,167)(164,177)(165,172)(168,173)
(169,176)(174,178)(179,231)(180,241)(181,236)(182,230)(183,227)(184,237)
(185,240)(186,234)(187,235)(188,229)(189,232)(190,242)(191,239)(192,233)
(193,228)(194,238)(195,215)(196,225)(197,220)(198,214)(199,211)(200,221)
(201,224)(202,218)(203,219)(204,213)(205,216)(206,226)(207,223)(208,217)
(209,212)(210,222);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s3*s1*s3*s1, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s3*s2*s3*s2*s1*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s3*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(1,2);
s1 := Sym(242)!(  4, 13)(  5, 16)(  6, 10)(  8, 17)(  9, 12)( 11, 15)( 19, 67)
( 20, 77)( 21, 80)( 22, 74)( 23, 71)( 24, 81)( 25, 76)( 26, 70)( 27, 79)
( 28, 73)( 29, 68)( 30, 78)( 31, 75)( 32, 69)( 33, 72)( 34, 82)( 35, 51)
( 36, 61)( 37, 64)( 38, 58)( 39, 55)( 40, 65)( 41, 60)( 42, 54)( 43, 63)
( 44, 57)( 45, 52)( 46, 62)( 47, 59)( 48, 53)( 49, 56)( 50, 66)( 83,163)
( 84,173)( 85,176)( 86,170)( 87,167)( 88,177)( 89,172)( 90,166)( 91,175)
( 92,169)( 93,164)( 94,174)( 95,171)( 96,165)( 97,168)( 98,178)( 99,227)
(100,237)(101,240)(102,234)(103,231)(104,241)(105,236)(106,230)(107,239)
(108,233)(109,228)(110,238)(111,235)(112,229)(113,232)(114,242)(115,211)
(116,221)(117,224)(118,218)(119,215)(120,225)(121,220)(122,214)(123,223)
(124,217)(125,212)(126,222)(127,219)(128,213)(129,216)(130,226)(131,195)
(132,205)(133,208)(134,202)(135,199)(136,209)(137,204)(138,198)(139,207)
(140,201)(141,196)(142,206)(143,203)(144,197)(145,200)(146,210)(147,179)
(148,189)(149,192)(150,186)(151,183)(152,193)(153,188)(154,182)(155,191)
(156,185)(157,180)(158,190)(159,187)(160,181)(161,184)(162,194);
s2 := Sym(242)!(  3, 99)(  4,100)(  5,102)(  6,101)(  7,104)(  8,103)(  9,105)
( 10,106)( 11,114)( 12,113)( 13,111)( 14,112)( 15,109)( 16,110)( 17,108)
( 18,107)( 19, 83)( 20, 84)( 21, 86)( 22, 85)( 23, 88)( 24, 87)( 25, 89)
( 26, 90)( 27, 98)( 28, 97)( 29, 95)( 30, 96)( 31, 93)( 32, 94)( 33, 92)
( 34, 91)( 35,147)( 36,148)( 37,150)( 38,149)( 39,152)( 40,151)( 41,153)
( 42,154)( 43,162)( 44,161)( 45,159)( 46,160)( 47,157)( 48,158)( 49,156)
( 50,155)( 51,131)( 52,132)( 53,134)( 54,133)( 55,136)( 56,135)( 57,137)
( 58,138)( 59,146)( 60,145)( 61,143)( 62,144)( 63,141)( 64,142)( 65,140)
( 66,139)( 67,115)( 68,116)( 69,118)( 70,117)( 71,120)( 72,119)( 73,121)
( 74,122)( 75,130)( 76,129)( 77,127)( 78,128)( 79,125)( 80,126)( 81,124)
( 82,123)(163,179)(164,180)(165,182)(166,181)(167,184)(168,183)(169,185)
(170,186)(171,194)(172,193)(173,191)(174,192)(175,189)(176,190)(177,188)
(178,187)(195,227)(196,228)(197,230)(198,229)(199,232)(200,231)(201,233)
(202,234)(203,242)(204,241)(205,239)(206,240)(207,237)(208,238)(209,236)
(210,235)(213,214)(215,216)(219,226)(220,225)(221,223)(222,224);
s3 := Sym(242)!(  3,  7)(  4, 17)(  5, 12)(  8, 13)(  9, 16)( 14, 18)( 19, 71)
( 20, 81)( 21, 76)( 22, 70)( 23, 67)( 24, 77)( 25, 80)( 26, 74)( 27, 75)
( 28, 69)( 29, 72)( 30, 82)( 31, 79)( 32, 73)( 33, 68)( 34, 78)( 35, 55)
( 36, 65)( 37, 60)( 38, 54)( 39, 51)( 40, 61)( 41, 64)( 42, 58)( 43, 59)
( 44, 53)( 45, 56)( 46, 66)( 47, 63)( 48, 57)( 49, 52)( 50, 62)( 83, 87)
( 84, 97)( 85, 92)( 88, 93)( 89, 96)( 94, 98)( 99,151)(100,161)(101,156)
(102,150)(103,147)(104,157)(105,160)(106,154)(107,155)(108,149)(109,152)
(110,162)(111,159)(112,153)(113,148)(114,158)(115,135)(116,145)(117,140)
(118,134)(119,131)(120,141)(121,144)(122,138)(123,139)(124,133)(125,136)
(126,146)(127,143)(128,137)(129,132)(130,142)(163,167)(164,177)(165,172)
(168,173)(169,176)(174,178)(179,231)(180,241)(181,236)(182,230)(183,227)
(184,237)(185,240)(186,234)(187,235)(188,229)(189,232)(190,242)(191,239)
(192,233)(193,228)(194,238)(195,215)(196,225)(197,220)(198,214)(199,211)
(200,221)(201,224)(202,218)(203,219)(204,213)(205,216)(206,226)(207,223)
(208,217)(209,212)(210,222);
poly := sub<Sym(242)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s3*s1*s3*s1, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s3*s2*s3*s2*s1*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s3*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s1*s2 >; 
 

to this polytope