Polytope of Type {3,2,5,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,5,10}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240399)
Rank : 5
Schlafli Type : {3,2,5,10}
Number of vertices, edges, etc : 3, 3, 16, 80, 32
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,5,5}*960
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (  4,164)(  5,174)(  6,177)(  7,171)(  8,168)(  9,178)( 10,173)( 11,167)
( 12,176)( 13,170)( 14,165)( 15,175)( 16,172)( 17,166)( 18,169)( 19,179)
( 20,228)( 21,238)( 22,241)( 23,235)( 24,232)( 25,242)( 26,237)( 27,231)
( 28,240)( 29,234)( 30,229)( 31,239)( 32,236)( 33,230)( 34,233)( 35,243)
( 36,212)( 37,222)( 38,225)( 39,219)( 40,216)( 41,226)( 42,221)( 43,215)
( 44,224)( 45,218)( 46,213)( 47,223)( 48,220)( 49,214)( 50,217)( 51,227)
( 52,196)( 53,206)( 54,209)( 55,203)( 56,200)( 57,210)( 58,205)( 59,199)
( 60,208)( 61,202)( 62,197)( 63,207)( 64,204)( 65,198)( 66,201)( 67,211)
( 68,180)( 69,190)( 70,193)( 71,187)( 72,184)( 73,194)( 74,189)( 75,183)
( 76,192)( 77,186)( 78,181)( 79,191)( 80,188)( 81,182)( 82,185)( 83,195)
( 84,244)( 85,254)( 86,257)( 87,251)( 88,248)( 89,258)( 90,253)( 91,247)
( 92,256)( 93,250)( 94,245)( 95,255)( 96,252)( 97,246)( 98,249)( 99,259)
(100,308)(101,318)(102,321)(103,315)(104,312)(105,322)(106,317)(107,311)
(108,320)(109,314)(110,309)(111,319)(112,316)(113,310)(114,313)(115,323)
(116,292)(117,302)(118,305)(119,299)(120,296)(121,306)(122,301)(123,295)
(124,304)(125,298)(126,293)(127,303)(128,300)(129,294)(130,297)(131,307)
(132,276)(133,286)(134,289)(135,283)(136,280)(137,290)(138,285)(139,279)
(140,288)(141,282)(142,277)(143,287)(144,284)(145,278)(146,281)(147,291)
(148,260)(149,270)(150,273)(151,267)(152,264)(153,274)(154,269)(155,263)
(156,272)(157,266)(158,261)(159,271)(160,268)(161,262)(162,265)(163,275);;
s3 := (  4,180)(  5,195)(  6,182)(  7,193)(  8,186)(  9,189)( 10,184)( 11,191)
( 12,190)( 13,185)( 14,188)( 15,187)( 16,192)( 17,183)( 18,194)( 19,181)
( 20,164)( 21,179)( 22,166)( 23,177)( 24,170)( 25,173)( 26,168)( 27,175)
( 28,174)( 29,169)( 30,172)( 31,171)( 32,176)( 33,167)( 34,178)( 35,165)
( 36,228)( 37,243)( 38,230)( 39,241)( 40,234)( 41,237)( 42,232)( 43,239)
( 44,238)( 45,233)( 46,236)( 47,235)( 48,240)( 49,231)( 50,242)( 51,229)
( 52,212)( 53,227)( 54,214)( 55,225)( 56,218)( 57,221)( 58,216)( 59,223)
( 60,222)( 61,217)( 62,220)( 63,219)( 64,224)( 65,215)( 66,226)( 67,213)
( 68,196)( 69,211)( 70,198)( 71,209)( 72,202)( 73,205)( 74,200)( 75,207)
( 76,206)( 77,201)( 78,204)( 79,203)( 80,208)( 81,199)( 82,210)( 83,197)
( 84,260)( 85,275)( 86,262)( 87,273)( 88,266)( 89,269)( 90,264)( 91,271)
( 92,270)( 93,265)( 94,268)( 95,267)( 96,272)( 97,263)( 98,274)( 99,261)
(100,244)(101,259)(102,246)(103,257)(104,250)(105,253)(106,248)(107,255)
(108,254)(109,249)(110,252)(111,251)(112,256)(113,247)(114,258)(115,245)
(116,308)(117,323)(118,310)(119,321)(120,314)(121,317)(122,312)(123,319)
(124,318)(125,313)(126,316)(127,315)(128,320)(129,311)(130,322)(131,309)
(132,292)(133,307)(134,294)(135,305)(136,298)(137,301)(138,296)(139,303)
(140,302)(141,297)(142,300)(143,299)(144,304)(145,295)(146,306)(147,293)
(148,276)(149,291)(150,278)(151,289)(152,282)(153,285)(154,280)(155,287)
(156,286)(157,281)(158,284)(159,283)(160,288)(161,279)(162,290)(163,277);;
s4 := (  4,248)(  5,258)(  6,253)(  7,247)(  8,244)(  9,254)( 10,257)( 11,251)
( 12,252)( 13,246)( 14,249)( 15,259)( 16,256)( 17,250)( 18,245)( 19,255)
( 20,312)( 21,322)( 22,317)( 23,311)( 24,308)( 25,318)( 26,321)( 27,315)
( 28,316)( 29,310)( 30,313)( 31,323)( 32,320)( 33,314)( 34,309)( 35,319)
( 36,296)( 37,306)( 38,301)( 39,295)( 40,292)( 41,302)( 42,305)( 43,299)
( 44,300)( 45,294)( 46,297)( 47,307)( 48,304)( 49,298)( 50,293)( 51,303)
( 52,280)( 53,290)( 54,285)( 55,279)( 56,276)( 57,286)( 58,289)( 59,283)
( 60,284)( 61,278)( 62,281)( 63,291)( 64,288)( 65,282)( 66,277)( 67,287)
( 68,264)( 69,274)( 70,269)( 71,263)( 72,260)( 73,270)( 74,273)( 75,267)
( 76,268)( 77,262)( 78,265)( 79,275)( 80,272)( 81,266)( 82,261)( 83,271)
( 84,168)( 85,178)( 86,173)( 87,167)( 88,164)( 89,174)( 90,177)( 91,171)
( 92,172)( 93,166)( 94,169)( 95,179)( 96,176)( 97,170)( 98,165)( 99,175)
(100,232)(101,242)(102,237)(103,231)(104,228)(105,238)(106,241)(107,235)
(108,236)(109,230)(110,233)(111,243)(112,240)(113,234)(114,229)(115,239)
(116,216)(117,226)(118,221)(119,215)(120,212)(121,222)(122,225)(123,219)
(124,220)(125,214)(126,217)(127,227)(128,224)(129,218)(130,213)(131,223)
(132,200)(133,210)(134,205)(135,199)(136,196)(137,206)(138,209)(139,203)
(140,204)(141,198)(142,201)(143,211)(144,208)(145,202)(146,197)(147,207)
(148,184)(149,194)(150,189)(151,183)(152,180)(153,190)(154,193)(155,187)
(156,188)(157,182)(158,185)(159,195)(160,192)(161,186)(162,181)(163,191);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(323)!(2,3);
s1 := Sym(323)!(1,2);
s2 := Sym(323)!(  4,164)(  5,174)(  6,177)(  7,171)(  8,168)(  9,178)( 10,173)
( 11,167)( 12,176)( 13,170)( 14,165)( 15,175)( 16,172)( 17,166)( 18,169)
( 19,179)( 20,228)( 21,238)( 22,241)( 23,235)( 24,232)( 25,242)( 26,237)
( 27,231)( 28,240)( 29,234)( 30,229)( 31,239)( 32,236)( 33,230)( 34,233)
( 35,243)( 36,212)( 37,222)( 38,225)( 39,219)( 40,216)( 41,226)( 42,221)
( 43,215)( 44,224)( 45,218)( 46,213)( 47,223)( 48,220)( 49,214)( 50,217)
( 51,227)( 52,196)( 53,206)( 54,209)( 55,203)( 56,200)( 57,210)( 58,205)
( 59,199)( 60,208)( 61,202)( 62,197)( 63,207)( 64,204)( 65,198)( 66,201)
( 67,211)( 68,180)( 69,190)( 70,193)( 71,187)( 72,184)( 73,194)( 74,189)
( 75,183)( 76,192)( 77,186)( 78,181)( 79,191)( 80,188)( 81,182)( 82,185)
( 83,195)( 84,244)( 85,254)( 86,257)( 87,251)( 88,248)( 89,258)( 90,253)
( 91,247)( 92,256)( 93,250)( 94,245)( 95,255)( 96,252)( 97,246)( 98,249)
( 99,259)(100,308)(101,318)(102,321)(103,315)(104,312)(105,322)(106,317)
(107,311)(108,320)(109,314)(110,309)(111,319)(112,316)(113,310)(114,313)
(115,323)(116,292)(117,302)(118,305)(119,299)(120,296)(121,306)(122,301)
(123,295)(124,304)(125,298)(126,293)(127,303)(128,300)(129,294)(130,297)
(131,307)(132,276)(133,286)(134,289)(135,283)(136,280)(137,290)(138,285)
(139,279)(140,288)(141,282)(142,277)(143,287)(144,284)(145,278)(146,281)
(147,291)(148,260)(149,270)(150,273)(151,267)(152,264)(153,274)(154,269)
(155,263)(156,272)(157,266)(158,261)(159,271)(160,268)(161,262)(162,265)
(163,275);
s3 := Sym(323)!(  4,180)(  5,195)(  6,182)(  7,193)(  8,186)(  9,189)( 10,184)
( 11,191)( 12,190)( 13,185)( 14,188)( 15,187)( 16,192)( 17,183)( 18,194)
( 19,181)( 20,164)( 21,179)( 22,166)( 23,177)( 24,170)( 25,173)( 26,168)
( 27,175)( 28,174)( 29,169)( 30,172)( 31,171)( 32,176)( 33,167)( 34,178)
( 35,165)( 36,228)( 37,243)( 38,230)( 39,241)( 40,234)( 41,237)( 42,232)
( 43,239)( 44,238)( 45,233)( 46,236)( 47,235)( 48,240)( 49,231)( 50,242)
( 51,229)( 52,212)( 53,227)( 54,214)( 55,225)( 56,218)( 57,221)( 58,216)
( 59,223)( 60,222)( 61,217)( 62,220)( 63,219)( 64,224)( 65,215)( 66,226)
( 67,213)( 68,196)( 69,211)( 70,198)( 71,209)( 72,202)( 73,205)( 74,200)
( 75,207)( 76,206)( 77,201)( 78,204)( 79,203)( 80,208)( 81,199)( 82,210)
( 83,197)( 84,260)( 85,275)( 86,262)( 87,273)( 88,266)( 89,269)( 90,264)
( 91,271)( 92,270)( 93,265)( 94,268)( 95,267)( 96,272)( 97,263)( 98,274)
( 99,261)(100,244)(101,259)(102,246)(103,257)(104,250)(105,253)(106,248)
(107,255)(108,254)(109,249)(110,252)(111,251)(112,256)(113,247)(114,258)
(115,245)(116,308)(117,323)(118,310)(119,321)(120,314)(121,317)(122,312)
(123,319)(124,318)(125,313)(126,316)(127,315)(128,320)(129,311)(130,322)
(131,309)(132,292)(133,307)(134,294)(135,305)(136,298)(137,301)(138,296)
(139,303)(140,302)(141,297)(142,300)(143,299)(144,304)(145,295)(146,306)
(147,293)(148,276)(149,291)(150,278)(151,289)(152,282)(153,285)(154,280)
(155,287)(156,286)(157,281)(158,284)(159,283)(160,288)(161,279)(162,290)
(163,277);
s4 := Sym(323)!(  4,248)(  5,258)(  6,253)(  7,247)(  8,244)(  9,254)( 10,257)
( 11,251)( 12,252)( 13,246)( 14,249)( 15,259)( 16,256)( 17,250)( 18,245)
( 19,255)( 20,312)( 21,322)( 22,317)( 23,311)( 24,308)( 25,318)( 26,321)
( 27,315)( 28,316)( 29,310)( 30,313)( 31,323)( 32,320)( 33,314)( 34,309)
( 35,319)( 36,296)( 37,306)( 38,301)( 39,295)( 40,292)( 41,302)( 42,305)
( 43,299)( 44,300)( 45,294)( 46,297)( 47,307)( 48,304)( 49,298)( 50,293)
( 51,303)( 52,280)( 53,290)( 54,285)( 55,279)( 56,276)( 57,286)( 58,289)
( 59,283)( 60,284)( 61,278)( 62,281)( 63,291)( 64,288)( 65,282)( 66,277)
( 67,287)( 68,264)( 69,274)( 70,269)( 71,263)( 72,260)( 73,270)( 74,273)
( 75,267)( 76,268)( 77,262)( 78,265)( 79,275)( 80,272)( 81,266)( 82,261)
( 83,271)( 84,168)( 85,178)( 86,173)( 87,167)( 88,164)( 89,174)( 90,177)
( 91,171)( 92,172)( 93,166)( 94,169)( 95,179)( 96,176)( 97,170)( 98,165)
( 99,175)(100,232)(101,242)(102,237)(103,231)(104,228)(105,238)(106,241)
(107,235)(108,236)(109,230)(110,233)(111,243)(112,240)(113,234)(114,229)
(115,239)(116,216)(117,226)(118,221)(119,215)(120,212)(121,222)(122,225)
(123,219)(124,220)(125,214)(126,217)(127,227)(128,224)(129,218)(130,213)
(131,223)(132,200)(133,210)(134,205)(135,199)(136,196)(137,206)(138,209)
(139,203)(140,204)(141,198)(142,201)(143,211)(144,208)(145,202)(146,197)
(147,207)(148,184)(149,194)(150,189)(151,183)(152,180)(153,190)(154,193)
(155,187)(156,188)(157,182)(158,185)(159,195)(160,192)(161,186)(162,181)
(163,191);
poly := sub<Sym(323)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 >; 
 

to this polytope