include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,10,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,10,2,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240407)
Rank : 6
Schlafli Type : {3,6,10,2,2}
Number of vertices, edges, etc : 4, 12, 40, 10, 2, 2
Order of s0s1s2s3s4s5 : 20
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {3,6,2,2,2}*384
10-fold quotients : {3,3,2,2,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 21, 41)( 22, 43)( 23, 42)
( 24, 44)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 49)( 30, 51)( 31, 50)
( 32, 52)( 33, 53)( 34, 55)( 35, 54)( 36, 56)( 37, 57)( 38, 59)( 39, 58)
( 40, 60)( 62, 63)( 66, 67)( 70, 71)( 74, 75)( 78, 79)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,105)( 86,107)( 87,106)( 88,108)( 89,109)( 90,111)
( 91,110)( 92,112)( 93,113)( 94,115)( 95,114)( 96,116)( 97,117)( 98,119)
( 99,118)(100,120);;
s1 := ( 1, 21)( 2, 22)( 3, 24)( 4, 23)( 5, 25)( 6, 26)( 7, 28)( 8, 27)
( 9, 29)( 10, 30)( 11, 32)( 12, 31)( 13, 33)( 14, 34)( 15, 36)( 16, 35)
( 17, 37)( 18, 38)( 19, 40)( 20, 39)( 43, 44)( 47, 48)( 51, 52)( 55, 56)
( 59, 60)( 61, 81)( 62, 82)( 63, 84)( 64, 83)( 65, 85)( 66, 86)( 67, 88)
( 68, 87)( 69, 89)( 70, 90)( 71, 92)( 72, 91)( 73, 93)( 74, 94)( 75, 96)
( 76, 95)( 77, 97)( 78, 98)( 79,100)( 80, 99)(103,104)(107,108)(111,112)
(115,116)(119,120);;
s2 := ( 1, 4)( 5, 20)( 6, 18)( 7, 19)( 8, 17)( 9, 16)( 10, 14)( 11, 15)
( 12, 13)( 21, 44)( 22, 42)( 23, 43)( 24, 41)( 25, 60)( 26, 58)( 27, 59)
( 28, 57)( 29, 56)( 30, 54)( 31, 55)( 32, 53)( 33, 52)( 34, 50)( 35, 51)
( 36, 49)( 37, 48)( 38, 46)( 39, 47)( 40, 45)( 61, 64)( 65, 80)( 66, 78)
( 67, 79)( 68, 77)( 69, 76)( 70, 74)( 71, 75)( 72, 73)( 81,104)( 82,102)
( 83,103)( 84,101)( 85,120)( 86,118)( 87,119)( 88,117)( 89,116)( 90,114)
( 91,115)( 92,113)( 93,112)( 94,110)( 95,111)( 96,109)( 97,108)( 98,106)
( 99,107)(100,105);;
s3 := ( 1, 65)( 2, 66)( 3, 67)( 4, 68)( 5, 61)( 6, 62)( 7, 63)( 8, 64)
( 9, 77)( 10, 78)( 11, 79)( 12, 80)( 13, 73)( 14, 74)( 15, 75)( 16, 76)
( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 85)( 22, 86)( 23, 87)( 24, 88)
( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 97)( 30, 98)( 31, 99)( 32,100)
( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 89)( 38, 90)( 39, 91)( 40, 92)
( 41,105)( 42,106)( 43,107)( 44,108)( 45,101)( 46,102)( 47,103)( 48,104)
( 49,117)( 50,118)( 51,119)( 52,120)( 53,113)( 54,114)( 55,115)( 56,116)
( 57,109)( 58,110)( 59,111)( 60,112);;
s4 := (121,122);;
s5 := (123,124);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(124)!( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 21, 41)( 22, 43)
( 23, 42)( 24, 44)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 49)( 30, 51)
( 31, 50)( 32, 52)( 33, 53)( 34, 55)( 35, 54)( 36, 56)( 37, 57)( 38, 59)
( 39, 58)( 40, 60)( 62, 63)( 66, 67)( 70, 71)( 74, 75)( 78, 79)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,105)( 86,107)( 87,106)( 88,108)( 89,109)
( 90,111)( 91,110)( 92,112)( 93,113)( 94,115)( 95,114)( 96,116)( 97,117)
( 98,119)( 99,118)(100,120);
s1 := Sym(124)!( 1, 21)( 2, 22)( 3, 24)( 4, 23)( 5, 25)( 6, 26)( 7, 28)
( 8, 27)( 9, 29)( 10, 30)( 11, 32)( 12, 31)( 13, 33)( 14, 34)( 15, 36)
( 16, 35)( 17, 37)( 18, 38)( 19, 40)( 20, 39)( 43, 44)( 47, 48)( 51, 52)
( 55, 56)( 59, 60)( 61, 81)( 62, 82)( 63, 84)( 64, 83)( 65, 85)( 66, 86)
( 67, 88)( 68, 87)( 69, 89)( 70, 90)( 71, 92)( 72, 91)( 73, 93)( 74, 94)
( 75, 96)( 76, 95)( 77, 97)( 78, 98)( 79,100)( 80, 99)(103,104)(107,108)
(111,112)(115,116)(119,120);
s2 := Sym(124)!( 1, 4)( 5, 20)( 6, 18)( 7, 19)( 8, 17)( 9, 16)( 10, 14)
( 11, 15)( 12, 13)( 21, 44)( 22, 42)( 23, 43)( 24, 41)( 25, 60)( 26, 58)
( 27, 59)( 28, 57)( 29, 56)( 30, 54)( 31, 55)( 32, 53)( 33, 52)( 34, 50)
( 35, 51)( 36, 49)( 37, 48)( 38, 46)( 39, 47)( 40, 45)( 61, 64)( 65, 80)
( 66, 78)( 67, 79)( 68, 77)( 69, 76)( 70, 74)( 71, 75)( 72, 73)( 81,104)
( 82,102)( 83,103)( 84,101)( 85,120)( 86,118)( 87,119)( 88,117)( 89,116)
( 90,114)( 91,115)( 92,113)( 93,112)( 94,110)( 95,111)( 96,109)( 97,108)
( 98,106)( 99,107)(100,105);
s3 := Sym(124)!( 1, 65)( 2, 66)( 3, 67)( 4, 68)( 5, 61)( 6, 62)( 7, 63)
( 8, 64)( 9, 77)( 10, 78)( 11, 79)( 12, 80)( 13, 73)( 14, 74)( 15, 75)
( 16, 76)( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 85)( 22, 86)( 23, 87)
( 24, 88)( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 97)( 30, 98)( 31, 99)
( 32,100)( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 89)( 38, 90)( 39, 91)
( 40, 92)( 41,105)( 42,106)( 43,107)( 44,108)( 45,101)( 46,102)( 47,103)
( 48,104)( 49,117)( 50,118)( 51,119)( 52,120)( 53,113)( 54,114)( 55,115)
( 56,116)( 57,109)( 58,110)( 59,111)( 60,112);
s4 := Sym(124)!(121,122);
s5 := Sym(124)!(123,124);
poly := sub<Sym(124)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope