include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,5,2,4,3,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,2,4,3,4}*1920
if this polytope has a name.
Group : SmallGroup(1920,240408)
Rank : 7
Schlafli Type : {2,5,2,4,3,4}
Number of vertices, edges, etc : 2, 5, 5, 4, 6, 6, 4
Order of s0s1s2s3s4s5s6 : 30
Order of s0s1s2s3s4s5s6s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7);;
s2 := (3,4)(5,6);;
s3 := ( 8, 9)(10,13)(11,12)(14,21)(15,22)(16,17)(18,20)(19,23);;
s4 := ( 9,11)(10,14)(13,18)(16,21)(17,20)(19,22);;
s5 := (10,15)(11,12)(13,22)(16,23)(17,19)(18,20);;
s6 := ( 8,15)( 9,22)(10,14)(11,19)(12,23)(13,21)(16,18)(17,20);;
poly := Group([s0,s1,s2,s3,s4,s5,s6]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5","s6");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;; s6 := F.7;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s6*s6, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s6*s0*s6, s1*s6*s1*s6, s2*s6*s2*s6,
s3*s6*s3*s6, s4*s6*s4*s6, s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4, s5*s6*s5*s6*s5*s6*s5*s6,
s5*s3*s4*s5*s3*s4*s5*s3*s4, s4*s6*s5*s4*s6*s5*s4*s6*s5,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(23)!(1,2);
s1 := Sym(23)!(4,5)(6,7);
s2 := Sym(23)!(3,4)(5,6);
s3 := Sym(23)!( 8, 9)(10,13)(11,12)(14,21)(15,22)(16,17)(18,20)(19,23);
s4 := Sym(23)!( 9,11)(10,14)(13,18)(16,21)(17,20)(19,22);
s5 := Sym(23)!(10,15)(11,12)(13,22)(16,23)(17,19)(18,20);
s6 := Sym(23)!( 8,15)( 9,22)(10,14)(11,19)(12,23)(13,21)(16,18)(17,20);
poly := sub<Sym(23)|s0,s1,s2,s3,s4,s5,s6>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5,s6> := Group< s0,s1,s2,s3,s4,s5,s6 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s6*s6, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s0*s6*s0*s6,
s1*s6*s1*s6, s2*s6*s2*s6, s3*s6*s3*s6,
s4*s6*s4*s6, s4*s5*s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4,
s5*s6*s5*s6*s5*s6*s5*s6, s5*s3*s4*s5*s3*s4*s5*s3*s4,
s4*s6*s5*s4*s6*s5*s4*s6*s5, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope