Polytope of Type {2,2,2,4,30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,4,30}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240411)
Rank : 6
Schlafli Type : {2,2,2,4,30}
Number of vertices, edges, etc : 2, 2, 2, 4, 60, 30
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,4,15}*960
   5-fold quotients : {2,2,2,4,6}*384c
   10-fold quotients : {2,2,2,4,3}*192
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)( 17, 18)( 19, 20)( 21, 22)
( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)( 33, 34)( 35, 36)( 37, 38)
( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49, 50)( 51, 52)( 53, 54)
( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)
( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)( 81, 82)( 83, 84)( 85, 86)
( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)( 97, 98)( 99,100)(101,102)
(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)(117,118)
(119,120)(121,122)(123,124)(125,126);;
s4 := (  8,  9)( 11, 23)( 12, 25)( 13, 24)( 14, 26)( 15, 19)( 16, 21)( 17, 20)
( 18, 22)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 63)( 32, 65)( 33, 64)
( 34, 66)( 35, 59)( 36, 61)( 37, 60)( 38, 62)( 39, 55)( 40, 57)( 41, 56)
( 42, 58)( 43, 51)( 44, 53)( 45, 52)( 46, 54)( 68, 69)( 71, 83)( 72, 85)
( 73, 84)( 74, 86)( 75, 79)( 76, 81)( 77, 80)( 78, 82)( 87,107)( 88,109)
( 89,108)( 90,110)( 91,123)( 92,125)( 93,124)( 94,126)( 95,119)( 96,121)
( 97,120)( 98,122)( 99,115)(100,117)(101,116)(102,118)(103,111)(104,113)
(105,112)(106,114);;
s5 := (  7, 91)(  8, 92)(  9, 94)( 10, 93)( 11, 87)( 12, 88)( 13, 90)( 14, 89)
( 15,103)( 16,104)( 17,106)( 18,105)( 19, 99)( 20,100)( 21,102)( 22,101)
( 23, 95)( 24, 96)( 25, 98)( 26, 97)( 27, 71)( 28, 72)( 29, 74)( 30, 73)
( 31, 67)( 32, 68)( 33, 70)( 34, 69)( 35, 83)( 36, 84)( 37, 86)( 38, 85)
( 39, 79)( 40, 80)( 41, 82)( 42, 81)( 43, 75)( 44, 76)( 45, 78)( 46, 77)
( 47,111)( 48,112)( 49,114)( 50,113)( 51,107)( 52,108)( 53,110)( 54,109)
( 55,123)( 56,124)( 57,126)( 58,125)( 59,119)( 60,120)( 61,122)( 62,121)
( 63,115)( 64,116)( 65,118)( 66,117);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s3*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(126)!(1,2);
s1 := Sym(126)!(3,4);
s2 := Sym(126)!(5,6);
s3 := Sym(126)!(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)( 17, 18)( 19, 20)
( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)( 33, 34)( 35, 36)
( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)( 65, 66)( 67, 68)
( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)( 81, 82)( 83, 84)
( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)( 97, 98)( 99,100)
(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)
(117,118)(119,120)(121,122)(123,124)(125,126);
s4 := Sym(126)!(  8,  9)( 11, 23)( 12, 25)( 13, 24)( 14, 26)( 15, 19)( 16, 21)
( 17, 20)( 18, 22)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 63)( 32, 65)
( 33, 64)( 34, 66)( 35, 59)( 36, 61)( 37, 60)( 38, 62)( 39, 55)( 40, 57)
( 41, 56)( 42, 58)( 43, 51)( 44, 53)( 45, 52)( 46, 54)( 68, 69)( 71, 83)
( 72, 85)( 73, 84)( 74, 86)( 75, 79)( 76, 81)( 77, 80)( 78, 82)( 87,107)
( 88,109)( 89,108)( 90,110)( 91,123)( 92,125)( 93,124)( 94,126)( 95,119)
( 96,121)( 97,120)( 98,122)( 99,115)(100,117)(101,116)(102,118)(103,111)
(104,113)(105,112)(106,114);
s5 := Sym(126)!(  7, 91)(  8, 92)(  9, 94)( 10, 93)( 11, 87)( 12, 88)( 13, 90)
( 14, 89)( 15,103)( 16,104)( 17,106)( 18,105)( 19, 99)( 20,100)( 21,102)
( 22,101)( 23, 95)( 24, 96)( 25, 98)( 26, 97)( 27, 71)( 28, 72)( 29, 74)
( 30, 73)( 31, 67)( 32, 68)( 33, 70)( 34, 69)( 35, 83)( 36, 84)( 37, 86)
( 38, 85)( 39, 79)( 40, 80)( 41, 82)( 42, 81)( 43, 75)( 44, 76)( 45, 78)
( 46, 77)( 47,111)( 48,112)( 49,114)( 50,113)( 51,107)( 52,108)( 53,110)
( 54,109)( 55,123)( 56,124)( 57,126)( 58,125)( 59,119)( 60,120)( 61,122)
( 62,121)( 63,115)( 64,116)( 65,118)( 66,117);
poly := sub<Sym(126)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s3*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope