Polytope of Type {2,2,2,30,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,30,4}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240411)
Rank : 6
Schlafli Type : {2,2,2,30,4}
Number of vertices, edges, etc : 2, 2, 2, 30, 60, 4
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,15,4}*960
   5-fold quotients : {2,2,2,6,4}*384c
   10-fold quotients : {2,2,2,3,4}*192
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (  8,  9)( 11, 23)( 12, 25)( 13, 24)( 14, 26)( 15, 19)( 16, 21)( 17, 20)
( 18, 22)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 63)( 32, 65)( 33, 64)
( 34, 66)( 35, 59)( 36, 61)( 37, 60)( 38, 62)( 39, 55)( 40, 57)( 41, 56)
( 42, 58)( 43, 51)( 44, 53)( 45, 52)( 46, 54)( 68, 69)( 71, 83)( 72, 85)
( 73, 84)( 74, 86)( 75, 79)( 76, 81)( 77, 80)( 78, 82)( 87,107)( 88,109)
( 89,108)( 90,110)( 91,123)( 92,125)( 93,124)( 94,126)( 95,119)( 96,121)
( 97,120)( 98,122)( 99,115)(100,117)(101,116)(102,118)(103,111)(104,113)
(105,112)(106,114);;
s4 := (  7, 91)(  8, 92)(  9, 94)( 10, 93)( 11, 87)( 12, 88)( 13, 90)( 14, 89)
( 15,103)( 16,104)( 17,106)( 18,105)( 19, 99)( 20,100)( 21,102)( 22,101)
( 23, 95)( 24, 96)( 25, 98)( 26, 97)( 27, 71)( 28, 72)( 29, 74)( 30, 73)
( 31, 67)( 32, 68)( 33, 70)( 34, 69)( 35, 83)( 36, 84)( 37, 86)( 38, 85)
( 39, 79)( 40, 80)( 41, 82)( 42, 81)( 43, 75)( 44, 76)( 45, 78)( 46, 77)
( 47,111)( 48,112)( 49,114)( 50,113)( 51,107)( 52,108)( 53,110)( 54,109)
( 55,123)( 56,124)( 57,126)( 58,125)( 59,119)( 60,120)( 61,122)( 62,121)
( 63,115)( 64,116)( 65,118)( 66,117);;
s5 := (  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)( 16, 17)( 19, 22)( 20, 21)
( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)( 32, 33)( 35, 38)( 36, 37)
( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)( 48, 49)( 51, 54)( 52, 53)
( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)( 64, 65)( 67, 70)( 68, 69)
( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)( 80, 81)( 83, 86)( 84, 85)
( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)( 96, 97)( 99,102)(100,101)
(103,106)(104,105)(107,110)(108,109)(111,114)(112,113)(115,118)(116,117)
(119,122)(120,121)(123,126)(124,125);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5, 
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(126)!(1,2);
s1 := Sym(126)!(3,4);
s2 := Sym(126)!(5,6);
s3 := Sym(126)!(  8,  9)( 11, 23)( 12, 25)( 13, 24)( 14, 26)( 15, 19)( 16, 21)
( 17, 20)( 18, 22)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 63)( 32, 65)
( 33, 64)( 34, 66)( 35, 59)( 36, 61)( 37, 60)( 38, 62)( 39, 55)( 40, 57)
( 41, 56)( 42, 58)( 43, 51)( 44, 53)( 45, 52)( 46, 54)( 68, 69)( 71, 83)
( 72, 85)( 73, 84)( 74, 86)( 75, 79)( 76, 81)( 77, 80)( 78, 82)( 87,107)
( 88,109)( 89,108)( 90,110)( 91,123)( 92,125)( 93,124)( 94,126)( 95,119)
( 96,121)( 97,120)( 98,122)( 99,115)(100,117)(101,116)(102,118)(103,111)
(104,113)(105,112)(106,114);
s4 := Sym(126)!(  7, 91)(  8, 92)(  9, 94)( 10, 93)( 11, 87)( 12, 88)( 13, 90)
( 14, 89)( 15,103)( 16,104)( 17,106)( 18,105)( 19, 99)( 20,100)( 21,102)
( 22,101)( 23, 95)( 24, 96)( 25, 98)( 26, 97)( 27, 71)( 28, 72)( 29, 74)
( 30, 73)( 31, 67)( 32, 68)( 33, 70)( 34, 69)( 35, 83)( 36, 84)( 37, 86)
( 38, 85)( 39, 79)( 40, 80)( 41, 82)( 42, 81)( 43, 75)( 44, 76)( 45, 78)
( 46, 77)( 47,111)( 48,112)( 49,114)( 50,113)( 51,107)( 52,108)( 53,110)
( 54,109)( 55,123)( 56,124)( 57,126)( 58,125)( 59,119)( 60,120)( 61,122)
( 62,121)( 63,115)( 64,116)( 65,118)( 66,117);
s5 := Sym(126)!(  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)( 16, 17)( 19, 22)
( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)( 32, 33)( 35, 38)
( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)( 48, 49)( 51, 54)
( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)( 64, 65)( 67, 70)
( 68, 69)( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)( 80, 81)( 83, 86)
( 84, 85)( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)( 96, 97)( 99,102)
(100,101)(103,106)(104,105)(107,110)(108,109)(111,114)(112,113)(115,118)
(116,117)(119,122)(120,121)(123,126)(124,125);
poly := sub<Sym(126)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5, 
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope