include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,8}*1920
if this polytope has a name.
Group : SmallGroup(1920,240560)
Rank : 4
Schlafli Type : {6,4,8}
Number of vertices, edges, etc : 30, 60, 80, 8
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4,4}*960
4-fold quotients : {6,4,2}*480a
8-fold quotients : {6,4,2}*240
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 5)( 6,10)( 7,11)( 8,12)( 9,13)(14,18)(15,19)(16,20)(17,21)(22,26)
(23,27)(24,28)(25,29)(30,34)(31,35)(32,36)(33,37);;
s1 := (1,2)(4,5);;
s2 := ( 2, 4)( 6,14)( 7,15)( 8,17)( 9,16)(10,18)(11,19)(12,21)(13,20)(22,30)
(23,31)(24,33)(25,32)(26,34)(27,35)(28,37)(29,36);;
s3 := ( 6,26)( 7,27)( 8,29)( 9,28)(10,22)(11,23)(12,25)(13,24)(14,36)(15,37)
(16,34)(17,35)(18,32)(19,33)(20,30)(21,31);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(37)!( 3, 5)( 6,10)( 7,11)( 8,12)( 9,13)(14,18)(15,19)(16,20)(17,21)
(22,26)(23,27)(24,28)(25,29)(30,34)(31,35)(32,36)(33,37);
s1 := Sym(37)!(1,2)(4,5);
s2 := Sym(37)!( 2, 4)( 6,14)( 7,15)( 8,17)( 9,16)(10,18)(11,19)(12,21)(13,20)
(22,30)(23,31)(24,33)(25,32)(26,34)(27,35)(28,37)(29,36);
s3 := Sym(37)!( 6,26)( 7,27)( 8,29)( 9,28)(10,22)(11,23)(12,25)(13,24)(14,36)
(15,37)(16,34)(17,35)(18,32)(19,33)(20,30)(21,31);
poly := sub<Sym(37)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s1 >;
References : None.
to this polytope