Polytope of Type {5,10,8,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10,8,2}*1920
Tell me
if this polytope has a name.
Group : SmallGroup(1920,240561)
Rank : 5
Schlafli Type : {5,10,8,2}
Number of vertices, edges, etc : 6, 30, 48, 8, 2
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,10,4,2}*960
4-fold quotients : {5,10,2,2}*480b
8-fold quotients : {5,5,2,2}*240
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (10,11)(12,13);;
s1 := ( 9,10)(11,12);;
s2 := ( 2, 4)( 3, 6)( 5, 8)(10,12)(11,13);;
s3 := (1,2)(3,4)(5,6)(7,8);;
s4 := (14,15);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!(10,11)(12,13);
s1 := Sym(15)!( 9,10)(11,12);
s2 := Sym(15)!( 2, 4)( 3, 6)( 5, 8)(10,12)(11,13);
s3 := Sym(15)!(1,2)(3,4)(5,6)(7,8);
s4 := Sym(15)!(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
Suggest a published reference
to this polytope