include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,3,2,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,3,2,8}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240561)
Rank : 5
Schlafli Type : {10,3,2,8}
Number of vertices, edges, etc : 20, 30, 6, 8, 8
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,3,2,8}*960, {10,3,2,4}*960b
4-fold quotients : {5,3,2,4}*480, {10,3,2,2}*480b
8-fold quotients : {5,3,2,2}*240
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);;
s1 := ( 3, 5)( 4,11)( 6,12)( 7, 9);;
s2 := ( 1, 3)( 2, 6)( 8, 9)(10,11);;
s3 := (14,15)(16,17)(18,19);;
s4 := (13,14)(15,16)(17,18)(19,20);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2, s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s2*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(20)!( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);
s1 := Sym(20)!( 3, 5)( 4,11)( 6,12)( 7, 9);
s2 := Sym(20)!( 1, 3)( 2, 6)( 8, 9)(10,11);
s3 := Sym(20)!(14,15)(16,17)(18,19);
s4 := Sym(20)!(13,14)(15,16)(17,18)(19,20);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2,
s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s2*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope