Polytope of Type {2,4,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240592)
Rank : 4
Schlafli Type : {2,4,12}
Number of vertices, edges, etc : 2, 40, 240, 120
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,12}*960a, {2,4,12}*960b, {2,4,6}*960
   4-fold quotients : {2,4,6}*480a, {2,4,6}*480b, {2,4,6}*480c
   8-fold quotients : {2,4,6}*240
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 9,10);;
s2 := ( 3, 5)( 4, 6)( 8, 9)(10,11);;
s3 := ( 5, 6)( 7, 8)(12,13);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s3*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!(1,2);
s1 := Sym(13)!( 5, 6)( 9,10);
s2 := Sym(13)!( 3, 5)( 4, 6)( 8, 9)(10,11);
s3 := Sym(13)!( 5, 6)( 7, 8)(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s3*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope