include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,10}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240595)
Rank : 4
Schlafli Type : {4,6,10}
Number of vertices, edges, etc : 4, 48, 120, 40
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,5}*960b, {4,6,10}*960c, {4,6,10}*960d, {2,6,10}*960c
4-fold quotients : {4,6,5}*480b, {2,3,10}*480, {2,6,5}*480b, {2,6,10}*480c, {2,6,10}*480d, {2,6,10}*480e, {2,6,10}*480f
8-fold quotients : {2,3,5}*240, {2,3,10}*240a, {2,3,10}*240b, {2,6,5}*240b, {2,6,5}*240c
16-fold quotients : {2,3,5}*120
60-fold quotients : {4,2,2}*32
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 6)( 2,14)( 3, 5)( 4,15)( 7,11)( 8,12)( 9,13)(10,16);;
s1 := ( 1,15)( 2, 9)( 3,13)( 4, 8)( 5,11)( 6,10)( 7,14)(12,16)(18,21)(19,20);;
s2 := ( 1, 7)( 2, 4)( 3,16)( 5,10)( 6,11)( 8, 9)(12,13)(14,15)(17,21)(19,20);;
s3 := ( 1,16)( 2, 9)( 3, 7)( 4, 8)( 5,11)( 6,10)(12,15)(13,14)(18,19)(20,21);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!( 1, 6)( 2,14)( 3, 5)( 4,15)( 7,11)( 8,12)( 9,13)(10,16);
s1 := Sym(21)!( 1,15)( 2, 9)( 3,13)( 4, 8)( 5,11)( 6,10)( 7,14)(12,16)(18,21)
(19,20);
s2 := Sym(21)!( 1, 7)( 2, 4)( 3,16)( 5,10)( 6,11)( 8, 9)(12,13)(14,15)(17,21)
(19,20);
s3 := Sym(21)!( 1,16)( 2, 9)( 3, 7)( 4, 8)( 5,11)( 6,10)(12,15)(13,14)(18,19)
(20,21);
poly := sub<Sym(21)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2 >;
References : None.
to this polytope