include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,12}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240800)
Rank : 3
Schlafli Type : {8,12}
Number of vertices, edges, etc : 80, 480, 120
Order of s0s1s2 : 20
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,6}*960b, {4,12}*960b
4-fold quotients : {4,12}*480a, {4,12}*480b, {4,6}*480
8-fold quotients : {4,6}*240a, {4,6}*240b, {4,6}*240c
16-fold quotients : {4,6}*120
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 7,39)( 8,40)( 9,35)(10,36)(11,12)(13,32)(14,31)(15,29)
(16,30)(17,44)(18,43)(19,34)(20,33)(21,23)(22,24)(25,38)(26,37)(27,41)(28,42)
(45,47)(46,48)(49,50)(51,84)(52,83)(53,80)(54,79)(57,75)(58,76)(59,74)(60,73)
(61,87)(62,88)(63,77)(64,78)(65,68)(66,67)(69,81)(70,82)(71,86)(72,85);;
s1 := ( 3, 4)( 5,15)( 6,16)( 7,24)( 8,23)(11,29)(12,30)(13,19)(14,20)(17,36)
(18,35)(25,33)(26,34)(27,38)(28,37)(31,42)(32,41)(39,40)(43,44)(47,48)(49,60)
(50,59)(51,67)(52,68)(53,54)(55,74)(56,73)(57,64)(58,63)(61,79)(62,80)(65,66)
(69,78)(70,77)(71,81)(72,82)(75,85)(76,86);;
s2 := ( 1,47)( 2,48)( 3,45)( 4,46)( 5,55)( 6,56)( 7,62)( 8,61)( 9,69)(10,70)
(11,49)(12,50)(13,65)(14,66)(15,71)(16,72)(17,52)(18,51)(19,64)(20,63)(21,57)
(22,58)(23,75)(24,76)(25,53)(26,54)(27,59)(28,60)(29,86)(30,85)(31,67)(32,68)
(33,77)(34,78)(35,81)(36,82)(37,79)(38,80)(39,88)(40,87)(41,74)(42,73)(43,84)
(44,83);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(88)!( 1, 3)( 2, 4)( 7,39)( 8,40)( 9,35)(10,36)(11,12)(13,32)(14,31)
(15,29)(16,30)(17,44)(18,43)(19,34)(20,33)(21,23)(22,24)(25,38)(26,37)(27,41)
(28,42)(45,47)(46,48)(49,50)(51,84)(52,83)(53,80)(54,79)(57,75)(58,76)(59,74)
(60,73)(61,87)(62,88)(63,77)(64,78)(65,68)(66,67)(69,81)(70,82)(71,86)(72,85);
s1 := Sym(88)!( 3, 4)( 5,15)( 6,16)( 7,24)( 8,23)(11,29)(12,30)(13,19)(14,20)
(17,36)(18,35)(25,33)(26,34)(27,38)(28,37)(31,42)(32,41)(39,40)(43,44)(47,48)
(49,60)(50,59)(51,67)(52,68)(53,54)(55,74)(56,73)(57,64)(58,63)(61,79)(62,80)
(65,66)(69,78)(70,77)(71,81)(72,82)(75,85)(76,86);
s2 := Sym(88)!( 1,47)( 2,48)( 3,45)( 4,46)( 5,55)( 6,56)( 7,62)( 8,61)( 9,69)
(10,70)(11,49)(12,50)(13,65)(14,66)(15,71)(16,72)(17,52)(18,51)(19,64)(20,63)
(21,57)(22,58)(23,75)(24,76)(25,53)(26,54)(27,59)(28,60)(29,86)(30,85)(31,67)
(32,68)(33,77)(34,78)(35,81)(36,82)(37,79)(38,80)(39,88)(40,87)(41,74)(42,73)
(43,84)(44,83);
poly := sub<Sym(88)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s0*s1*s2 >;
References : None.
to this polytope