Polytope of Type {24,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,6,2}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240809)
Rank : 4
Schlafli Type : {24,6,2}
Number of vertices, edges, etc : 80, 240, 20, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6,2}*960b
   4-fold quotients : {6,6,2}*480b
   8-fold quotients : {6,6,2}*240
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2,37)( 4,32)( 5,44)( 6,19)( 7,17)( 8,14)( 9,29)(10,20)(11,25)
(12,31)(13,42)(15,47)(16,27)(18,38)(21,43)(22,45)(23,28)(24,34)(26,40)(30,48)
(33,41)(35,36)(39,46);;
s1 := ( 1, 6)( 2,28)( 3,36)( 4,26)( 5,14)( 7,41)( 8,37)( 9,18)(10,11)(12,27)
(13,48)(15,16)(17,25)(19,39)(20,47)(21,34)(22,33)(23,24)(29,43)(30,35)(31,44)
(32,38)(40,42)(45,46);;
s2 := ( 1,13)( 2,36)( 3,42)( 4,17)( 5,19)( 6,44)( 7,32)( 8,27)( 9,20)(10,29)
(11,22)(14,16)(15,40)(18,24)(23,46)(25,45)(26,47)(28,39)(34,38)(35,37);;
s3 := (49,50);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!( 1, 3)( 2,37)( 4,32)( 5,44)( 6,19)( 7,17)( 8,14)( 9,29)(10,20)
(11,25)(12,31)(13,42)(15,47)(16,27)(18,38)(21,43)(22,45)(23,28)(24,34)(26,40)
(30,48)(33,41)(35,36)(39,46);
s1 := Sym(50)!( 1, 6)( 2,28)( 3,36)( 4,26)( 5,14)( 7,41)( 8,37)( 9,18)(10,11)
(12,27)(13,48)(15,16)(17,25)(19,39)(20,47)(21,34)(22,33)(23,24)(29,43)(30,35)
(31,44)(32,38)(40,42)(45,46);
s2 := Sym(50)!( 1,13)( 2,36)( 3,42)( 4,17)( 5,19)( 6,44)( 7,32)( 8,27)( 9,20)
(10,29)(11,22)(14,16)(15,40)(18,24)(23,46)(25,45)(26,47)(28,39)(34,38)(35,37);
s3 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope