Polytope of Type {2,6,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,24}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240809)
Rank : 4
Schlafli Type : {2,6,24}
Number of vertices, edges, etc : 2, 20, 240, 80
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,12}*960b
   4-fold quotients : {2,6,6}*480a
   8-fold quotients : {2,6,6}*240
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,11)( 5,16)( 6,38)( 7,22)( 8,31)( 9,39)(12,37)(14,30)(15,29)(17,45)
(19,21)(20,27)(23,28)(24,36)(25,32)(33,48)(34,46)(35,49)(41,50)(42,43);;
s2 := ( 3, 8)( 4,30)( 5,38)( 6,28)( 7,16)( 9,43)(10,39)(11,20)(12,13)(14,29)
(15,50)(17,18)(19,27)(21,41)(22,49)(23,36)(24,35)(25,26)(31,45)(32,37)(33,46)
(34,40)(42,44)(47,48);;
s3 := ( 3,26)( 4, 8)( 5,36)( 6,12)( 7,46)( 9,19)(10,47)(11,31)(13,44)(14,17)
(15,27)(16,24)(18,40)(20,29)(21,39)(22,34)(23,25)(28,32)(30,45)(33,49)(35,48)
(37,38)(41,43)(42,50);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s3*s2*s1*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!(1,2);
s1 := Sym(50)!( 4,11)( 5,16)( 6,38)( 7,22)( 8,31)( 9,39)(12,37)(14,30)(15,29)
(17,45)(19,21)(20,27)(23,28)(24,36)(25,32)(33,48)(34,46)(35,49)(41,50)(42,43);
s2 := Sym(50)!( 3, 8)( 4,30)( 5,38)( 6,28)( 7,16)( 9,43)(10,39)(11,20)(12,13)
(14,29)(15,50)(17,18)(19,27)(21,41)(22,49)(23,36)(24,35)(25,26)(31,45)(32,37)
(33,46)(34,40)(42,44)(47,48);
s3 := Sym(50)!( 3,26)( 4, 8)( 5,36)( 6,12)( 7,46)( 9,19)(10,47)(11,31)(13,44)
(14,17)(15,27)(16,24)(18,40)(20,29)(21,39)(22,34)(23,25)(28,32)(30,45)(33,49)
(35,48)(37,38)(41,43)(42,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s3*s2*s1*s3*s2*s3*s2*s3 >; 
 

to this polytope