include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4}*1920
if this polytope has a name.
Group : SmallGroup(1920,240864)
Rank : 3
Schlafli Type : {6,4}
Number of vertices, edges, etc : 240, 480, 160
Order of s0s1s2 : 40
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4}*960
4-fold quotients : {6,4}*480
8-fold quotients : {6,4}*240a, {6,4}*240b, {6,4}*240c
16-fold quotients : {6,4}*120
120-fold quotients : {2,4}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,19)( 2,26)( 3,10)( 4,33)( 5,34)( 6,35)( 7,38)( 8,16)( 9,42)(11,20)
(12,21)(13,22)(14,48)(15,24)(17,27)(18,29)(23,36)(25,40)(28,32)(30,45)(31,46)
(37,44)(39,41)(43,47)(49,84)(50,70)(51,78)(52,72)(53,64)(54,68)(55,75)(56,66)
(57,58)(59,79)(60,89)(61,95)(62,69)(63,73)(65,80)(67,94)(71,85)(74,93)(76,82)
(77,86)(81,87)(83,92)(88,96)(90,91);;
s1 := ( 1,58)( 2,64)( 3,67)( 4,68)( 5,69)( 6,70)( 7,72)( 8,74)( 9,75)(10,89)
(11,81)(12,82)(13,83)(14,84)(15,86)(16,79)(17,90)(18,62)(19,87)(20,80)(21,95)
(22,73)(23,96)(24,78)(25,54)(26,94)(27,85)(28,59)(29,71)(30,55)(31,50)(32,52)
(33,76)(34,91)(35,88)(36,66)(37,57)(38,93)(39,51)(40,61)(41,49)(42,92)(43,60)
(44,65)(45,63)(46,56)(47,53)(48,77);;
s2 := ( 1,58)( 2,64)( 3,86)( 4,68)( 5,69)( 6,70)( 7,72)( 8,96)( 9,75)(10,77)
(11,74)(12,67)(13,82)(14,84)(15,83)(16,88)(17,81)(18,63)(19,57)(20,93)(21,94)
(22,76)(23,90)(24,92)(25,71)(26,53)(27,87)(28,89)(29,73)(30,56)(31,51)(32,60)
(33,54)(34,62)(35,50)(36,91)(37,61)(38,52)(39,79)(40,85)(41,59)(42,55)(43,80)
(44,95)(45,66)(46,78)(47,65)(48,49);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(96)!( 1,19)( 2,26)( 3,10)( 4,33)( 5,34)( 6,35)( 7,38)( 8,16)( 9,42)
(11,20)(12,21)(13,22)(14,48)(15,24)(17,27)(18,29)(23,36)(25,40)(28,32)(30,45)
(31,46)(37,44)(39,41)(43,47)(49,84)(50,70)(51,78)(52,72)(53,64)(54,68)(55,75)
(56,66)(57,58)(59,79)(60,89)(61,95)(62,69)(63,73)(65,80)(67,94)(71,85)(74,93)
(76,82)(77,86)(81,87)(83,92)(88,96)(90,91);
s1 := Sym(96)!( 1,58)( 2,64)( 3,67)( 4,68)( 5,69)( 6,70)( 7,72)( 8,74)( 9,75)
(10,89)(11,81)(12,82)(13,83)(14,84)(15,86)(16,79)(17,90)(18,62)(19,87)(20,80)
(21,95)(22,73)(23,96)(24,78)(25,54)(26,94)(27,85)(28,59)(29,71)(30,55)(31,50)
(32,52)(33,76)(34,91)(35,88)(36,66)(37,57)(38,93)(39,51)(40,61)(41,49)(42,92)
(43,60)(44,65)(45,63)(46,56)(47,53)(48,77);
s2 := Sym(96)!( 1,58)( 2,64)( 3,86)( 4,68)( 5,69)( 6,70)( 7,72)( 8,96)( 9,75)
(10,77)(11,74)(12,67)(13,82)(14,84)(15,83)(16,88)(17,81)(18,63)(19,57)(20,93)
(21,94)(22,76)(23,90)(24,92)(25,71)(26,53)(27,87)(28,89)(29,73)(30,56)(31,51)
(32,60)(33,54)(34,62)(35,50)(36,91)(37,61)(38,52)(39,79)(40,85)(41,59)(42,55)
(43,80)(44,95)(45,66)(46,78)(47,65)(48,49);
poly := sub<Sym(96)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope