include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,5,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240973)
Rank : 5
Schlafli Type : {2,6,5,2}
Number of vertices, edges, etc : 2, 48, 120, 40, 2
Order of s0s1s2s3s4 : 8
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,5,2}*960a
4-fold quotients : {2,6,5,2}*480a
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)(16,38)
(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);;
s2 := ( 5,12)( 6,11)( 9,28)(10,19)(13,24)(14,25)(15,18)(16,17)(20,39)(21,40)
(22,27)(23,26)(29,34)(30,33)(31,38)(32,37)(35,42)(36,41);;
s3 := ( 3, 9)( 4,17)( 5,33)( 6,36)( 7,10)( 8,18)(11,34)(12,35)(13,42)(14,41)
(15,37)(16,38)(19,20)(21,28)(22,24)(23,25)(26,29)(27,30);;
s4 := (43,44);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s1*s2*s3*s2*s1*s3*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(44)!(1,2);
s1 := Sym(44)!( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)
(16,38)(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);
s2 := Sym(44)!( 5,12)( 6,11)( 9,28)(10,19)(13,24)(14,25)(15,18)(16,17)(20,39)
(21,40)(22,27)(23,26)(29,34)(30,33)(31,38)(32,37)(35,42)(36,41);
s3 := Sym(44)!( 3, 9)( 4,17)( 5,33)( 6,36)( 7,10)( 8,18)(11,34)(12,35)(13,42)
(14,41)(15,37)(16,38)(19,20)(21,28)(22,24)(23,25)(26,29)(27,30);
s4 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s1*s2*s3*s2*s1*s3*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s1 >;
to this polytope