Polytope of Type {2,8,5,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,5,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240973)
Rank : 5
Schlafli Type : {2,8,5,2}
Number of vertices, edges, etc : 2, 48, 120, 30, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,5,2}*960
   4-fold quotients : {2,4,5,2}*480
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)(16,38)
(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);;
s2 := ( 5,17)( 6, 9)(10,12)(11,18)(13,21)(14,38)(15,28)(16,19)(20,26)(22,34)
(23,35)(24,36)(25,33)(27,37)(29,32)(30,31)(39,42)(40,41);;
s3 := ( 3,13)( 4,14)( 7,26)( 8,27)( 9,38)(10,21)(15,41)(16,42)(17,37)(18,20)
(19,30)(22,24)(23,25)(28,29)(31,36)(32,33)(34,39)(35,40);;
s4 := (43,44);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(44)!(1,2);
s1 := Sym(44)!( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)
(16,38)(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);
s2 := Sym(44)!( 5,17)( 6, 9)(10,12)(11,18)(13,21)(14,38)(15,28)(16,19)(20,26)
(22,34)(23,35)(24,36)(25,33)(27,37)(29,32)(30,31)(39,42)(40,41);
s3 := Sym(44)!( 3,13)( 4,14)( 7,26)( 8,27)( 9,38)(10,21)(15,41)(16,42)(17,37)
(18,20)(19,30)(22,24)(23,25)(28,29)(31,36)(32,33)(34,39)(35,40);
s4 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >; 
 

to this polytope