Polytope of Type {5,6,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,6,2,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240973)
Rank : 5
Schlafli Type : {5,6,2,2}
Number of vertices, edges, etc : 40, 120, 48, 2, 2
Order of s0s1s2s3s4 : 8
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,6,2,2}*960a
   4-fold quotients : {5,6,2,2}*480a
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3,17)( 4,13)( 7,16)( 8,15)( 9,26)(10,14)(11,39)(12,28)(18,33)(19,34)
(20,30)(21,37)(22,38)(23,29)(24,40)(25,27)(31,36)(32,35);;
s1 := ( 1, 3)( 2, 9)( 4, 5)( 6,10)( 7,24)( 8,25)(11,15)(12,16)(13,21)(14,20)
(17,22)(18,36)(19,35)(23,26)(27,31)(28,34)(32,40)(33,39);;
s2 := ( 2, 5)( 3,13)( 4,17)( 7, 8)( 9,14)(10,26)(11,38)(12,37)(15,16)(18,36)
(20,27)(21,28)(22,39)(23,40)(24,29)(25,30)(31,33);;
s3 := (41,42);;
s4 := (43,44);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(44)!( 3,17)( 4,13)( 7,16)( 8,15)( 9,26)(10,14)(11,39)(12,28)(18,33)
(19,34)(20,30)(21,37)(22,38)(23,29)(24,40)(25,27)(31,36)(32,35);
s1 := Sym(44)!( 1, 3)( 2, 9)( 4, 5)( 6,10)( 7,24)( 8,25)(11,15)(12,16)(13,21)
(14,20)(17,22)(18,36)(19,35)(23,26)(27,31)(28,34)(32,40)(33,39);
s2 := Sym(44)!( 2, 5)( 3,13)( 4,17)( 7, 8)( 9,14)(10,26)(11,38)(12,37)(15,16)
(18,36)(20,27)(21,28)(22,39)(23,40)(24,29)(25,30)(31,33);
s3 := Sym(44)!(41,42);
s4 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 >; 
 

to this polytope