include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,12,2}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240976)
Rank : 4
Schlafli Type : {10,12,2}
Number of vertices, edges, etc : 40, 240, 48, 2
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,6,2}*960b
4-fold quotients : {5,6,2}*480a, {10,6,2}*480a, {10,6,2}*480b
8-fold quotients : {5,6,2}*240a
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 4)( 3,28)( 5,13)( 7,15)( 8,42)( 9,24)(10,35)(11,31)(12,34)(14,33)
(18,29)(19,21)(20,37)(22,23)(25,41)(26,40)(27,39)(30,36)(43,45)(46,47);;
s1 := ( 2,27)( 3, 8)( 4,12)( 6,26)( 7, 9)(10,44)(11,40)(14,16)(15,30)(18,24)
(19,28)(21,38)(22,31)(23,33)(25,45)(29,46)(34,43)(35,42)(36,47)(39,41);;
s2 := ( 1, 6)( 2,21)( 3,15)( 4,19)( 5,24)( 7,28)( 8,29)( 9,13)(10,34)(11,45)
(12,35)(14,46)(16,48)(17,44)(18,42)(20,25)(22,27)(23,39)(26,30)(31,43)(32,38)
(33,47)(36,40)(37,41);;
s3 := (49,50);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(50)!( 2, 4)( 3,28)( 5,13)( 7,15)( 8,42)( 9,24)(10,35)(11,31)(12,34)
(14,33)(18,29)(19,21)(20,37)(22,23)(25,41)(26,40)(27,39)(30,36)(43,45)(46,47);
s1 := Sym(50)!( 2,27)( 3, 8)( 4,12)( 6,26)( 7, 9)(10,44)(11,40)(14,16)(15,30)
(18,24)(19,28)(21,38)(22,31)(23,33)(25,45)(29,46)(34,43)(35,42)(36,47)(39,41);
s2 := Sym(50)!( 1, 6)( 2,21)( 3,15)( 4,19)( 5,24)( 7,28)( 8,29)( 9,13)(10,34)
(11,45)(12,35)(14,46)(16,48)(17,44)(18,42)(20,25)(22,27)(23,39)(26,30)(31,43)
(32,38)(33,47)(36,40)(37,41);
s3 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope