include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,12}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240977)
Rank : 4
Schlafli Type : {2,6,12}
Number of vertices, edges, etc : 2, 40, 240, 80
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6}*960
4-fold quotients : {2,6,6}*480a, {2,6,6}*480b, {2,6,6}*480c
8-fold quotients : {2,6,6}*240
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,28)( 5,77)( 6,82)( 7,43)( 8,72)( 9,70)(10,45)(11,21)(12,15)(13,14)
(17,66)(19,46)(20,49)(23,35)(24,41)(25,44)(26,80)(29,38)(30,81)(31,57)(32,55)
(33,54)(34,56)(37,39)(40,78)(42,79)(47,50)(48,65)(51,64)(52,74)(53,61)(58,59)
(62,69)(67,73)(68,71)(75,76);;
s2 := ( 4,24)( 5,23)( 6,39)( 7,82)( 8,50)( 9,46)(10,15)(11,13)(12,65)(14,71)
(16,70)(17,66)(18,64)(19,63)(20,72)(21,49)(22,36)(25,42)(26,54)(28,34)(29,35)
(30,78)(31,81)(32,44)(33,76)(38,41)(47,68)(51,73)(52,61)(53,59)(55,80)(56,77)
(60,67)(75,79);;
s3 := ( 3,16)( 4,66)( 5,68)( 6,67)( 7,14)( 8,76)( 9,54)(10,37)(11,57)(12,56)
(13,43)(15,34)(17,28)(18,27)(19,30)(20,29)(21,31)(22,63)(23,62)(24,61)(25,64)
(26,65)(32,59)(33,70)(35,69)(36,60)(38,49)(39,45)(40,52)(41,53)(42,50)(44,51)
(46,81)(47,79)(48,80)(55,58)(71,77)(72,75)(73,82)(74,78);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!(1,2);
s1 := Sym(82)!( 4,28)( 5,77)( 6,82)( 7,43)( 8,72)( 9,70)(10,45)(11,21)(12,15)
(13,14)(17,66)(19,46)(20,49)(23,35)(24,41)(25,44)(26,80)(29,38)(30,81)(31,57)
(32,55)(33,54)(34,56)(37,39)(40,78)(42,79)(47,50)(48,65)(51,64)(52,74)(53,61)
(58,59)(62,69)(67,73)(68,71)(75,76);
s2 := Sym(82)!( 4,24)( 5,23)( 6,39)( 7,82)( 8,50)( 9,46)(10,15)(11,13)(12,65)
(14,71)(16,70)(17,66)(18,64)(19,63)(20,72)(21,49)(22,36)(25,42)(26,54)(28,34)
(29,35)(30,78)(31,81)(32,44)(33,76)(38,41)(47,68)(51,73)(52,61)(53,59)(55,80)
(56,77)(60,67)(75,79);
s3 := Sym(82)!( 3,16)( 4,66)( 5,68)( 6,67)( 7,14)( 8,76)( 9,54)(10,37)(11,57)
(12,56)(13,43)(15,34)(17,28)(18,27)(19,30)(20,29)(21,31)(22,63)(23,62)(24,61)
(25,64)(26,65)(32,59)(33,70)(35,69)(36,60)(38,49)(39,45)(40,52)(41,53)(42,50)
(44,51)(46,81)(47,79)(48,80)(55,58)(71,77)(72,75)(73,82)(74,78);
poly := sub<Sym(82)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2 >;
to this polytope