Polytope of Type {2,6,20}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,20}*1920e
if this polytope has a name.
Group : SmallGroup(1920,240988)
Rank : 4
Schlafli Type : {2,6,20}
Number of vertices, edges, etc : 2, 24, 240, 80
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,20}*960, {2,6,10}*960c
   4-fold quotients : {2,3,10}*480, {2,6,5}*480b, {2,6,10}*480c, {2,6,10}*480d, {2,6,10}*480e, {2,6,10}*480f
   8-fold quotients : {2,3,5}*240, {2,3,10}*240a, {2,3,10}*240b, {2,6,5}*240b, {2,6,5}*240c
   16-fold quotients : {2,3,5}*120
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,47)( 5,43)( 6,19)( 7,21)( 9,32)(10,50)(11,38)(12,49)(13,25)(14,36)
(15,24)(16,42)(17,41)(22,28)(23,31)(26,40)(27,39)(29,48)(30,33)(37,44);;
s2 := ( 3, 4)( 5,33)( 6,27)( 7,29)( 8,12)(10,19)(11,21)(13,14)(15,45)(16,34)
(17,30)(18,26)(20,28)(22,40)(23,42)(24,44)(31,46)(32,36)(35,37)(47,49)
(51,52);;
s3 := ( 3,34)( 4,29)( 5,24)( 6,36)( 7,30)( 8,46)( 9,16)(10,26)(11,12)(13,23)
(14,19)(15,43)(17,44)(18,35)(20,45)(21,33)(22,39)(25,31)(27,28)(32,42)(37,41)
(38,49)(40,50)(47,48);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(52)!(1,2);
s1 := Sym(52)!( 4,47)( 5,43)( 6,19)( 7,21)( 9,32)(10,50)(11,38)(12,49)(13,25)
(14,36)(15,24)(16,42)(17,41)(22,28)(23,31)(26,40)(27,39)(29,48)(30,33)(37,44);
s2 := Sym(52)!( 3, 4)( 5,33)( 6,27)( 7,29)( 8,12)(10,19)(11,21)(13,14)(15,45)
(16,34)(17,30)(18,26)(20,28)(22,40)(23,42)(24,44)(31,46)(32,36)(35,37)(47,49)
(51,52);
s3 := Sym(52)!( 3,34)( 4,29)( 5,24)( 6,36)( 7,30)( 8,46)( 9,16)(10,26)(11,12)
(13,23)(14,19)(15,43)(17,44)(18,35)(20,45)(21,33)(22,39)(25,31)(27,28)(32,42)
(37,41)(38,49)(40,50)(47,48);
poly := sub<Sym(52)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >; 
 

to this polytope