include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,12,2}*1920e
if this polytope has a name.
Group : SmallGroup(1920,240988)
Rank : 4
Schlafli Type : {10,12,2}
Number of vertices, edges, etc : 40, 240, 48, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,12,2}*960, {10,6,2}*960c
4-fold quotients : {5,6,2}*480b, {10,3,2}*480, {10,6,2}*480c, {10,6,2}*480d, {10,6,2}*480e, {10,6,2}*480f
8-fold quotients : {5,3,2}*240, {5,6,2}*240b, {5,6,2}*240c, {10,3,2}*240a, {10,3,2}*240b
16-fold quotients : {5,3,2}*120
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)(12,34)
(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);;
s1 := ( 2, 3)( 4,17)( 5,19)( 7,28)( 8,35)( 9,29)(10,15)(11,26)(12,39)(13,25)
(14,27)(20,38)(21,33)(22,44)(23,31)(24,30)(32,42)(34,41)(40,43)(45,47)
(49,50);;
s2 := ( 1,32)( 2,46)( 3,13)( 4,12)( 5,31)( 6,44)( 7,40)( 8,38)( 9,47)(10,36)
(11,29)(14,30)(15,35)(16,33)(17,34)(18,43)(19,28)(20,25)(21,23)(22,41)(24,48)
(26,37)(27,45)(39,42);;
s3 := (51,52);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(52)!( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)
(12,34)(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);
s1 := Sym(52)!( 2, 3)( 4,17)( 5,19)( 7,28)( 8,35)( 9,29)(10,15)(11,26)(12,39)
(13,25)(14,27)(20,38)(21,33)(22,44)(23,31)(24,30)(32,42)(34,41)(40,43)(45,47)
(49,50);
s2 := Sym(52)!( 1,32)( 2,46)( 3,13)( 4,12)( 5,31)( 6,44)( 7,40)( 8,38)( 9,47)
(10,36)(11,29)(14,30)(15,35)(16,33)(17,34)(18,43)(19,28)(20,25)(21,23)(22,41)
(24,48)(26,37)(27,45)(39,42);
s3 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >;
to this polytope