include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,12}*1920d
if this polytope has a name.
Group : SmallGroup(1920,241004)
Rank : 3
Schlafli Type : {5,12}
Number of vertices, edges, etc : 80, 480, 192
Order of s0s1s2 : 5
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,6}*960
32-fold quotients : {5,3}*60
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,15)( 7, 8)( 9,30)(11,16)(12,17)(13,25)(14,19)(18,29)(20,31)
(21,28)(22,27)(23,32)(24,26);;
s1 := ( 2, 3)( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,21)(17,20)(18,22)(19,23)
(24,28)(25,26)(27,31)(29,30);;
s2 := ( 1,10)( 2, 6)( 3,30)( 4, 9)( 5, 8)( 7,15)(11,32)(12,17)(14,31)(16,23)
(18,27)(19,20)(22,29)(24,26);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(32)!( 3, 4)( 5,15)( 7, 8)( 9,30)(11,16)(12,17)(13,25)(14,19)(18,29)
(20,31)(21,28)(22,27)(23,32)(24,26);
s1 := Sym(32)!( 2, 3)( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,21)(17,20)(18,22)
(19,23)(24,28)(25,26)(27,31)(29,30);
s2 := Sym(32)!( 1,10)( 2, 6)( 3,30)( 4, 9)( 5, 8)( 7,15)(11,32)(12,17)(14,31)
(16,23)(18,27)(19,20)(22,29)(24,26);
poly := sub<Sym(32)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 >;
References : None.
to this polytope